parent
413e407242
commit
956ea4faac
|
@ -537,7 +537,7 @@ I spent some time looking at the residuals to see if I could figure if `mod2` di
|
|||
|
||||
### Transformations
|
||||
|
||||
You can also perform transformations inside the model formula. For example, `log(y) ~ sqrt(x1) + x2` is transformed to `y = a_1 + a_2 * x1 * sqrt(x) + a_3 * x2`. If your transformation involves `+`, `*`, `^`, or `-`, you'll need to wrap it in `I()` so R doesn't treat it like part of the model specification. For example, `y ~ x + I(x ^ 2)` is translated to `y = a_1 + a_2 * x + a_3 * x^2`. If you forget the `I()` and specify `y ~ x ^ 2 + x`, R will compute `y ~ x * x + x`. `x * x` means the interaction of `x` with itself, which is the same as `x`. R automatically drops redundant variables so `x + x` become `x`, meaning that `y ~ x ^ 2 + x` specifies the function `y = a_1 + a_2 * x`. That's probably not what you intended!
|
||||
You can also perform transformations inside the model formula. For example, `log(y) ~ sqrt(x1) + x2` is transformed to `log(y) = a_1 + a_2 * sqrt(x1) + a_3 * x2`. If your transformation involves `+`, `*`, `^`, or `-`, you'll need to wrap it in `I()` so R doesn't treat it like part of the model specification. For example, `y ~ x + I(x ^ 2)` is translated to `y = a_1 + a_2 * x + a_3 * x^2`. If you forget the `I()` and specify `y ~ x ^ 2 + x`, R will compute `y ~ x * x + x`. `x * x` means the interaction of `x` with itself, which is the same as `x`. R automatically drops redundant variables so `x + x` become `x`, meaning that `y ~ x ^ 2 + x` specifies the function `y = a_1 + a_2 * x`. That's probably not what you intended!
|
||||
|
||||
Again, if you get confused about what your model is doing, you can always use `model_matrix()` to see exactly what equation `lm()` is fitting:
|
||||
|
||||
|
|
Loading…
Reference in New Issue