1231 lines
18 KiB
Plaintext
1231 lines
18 KiB
Plaintext
---
|
||
title: "Data Transform"
|
||
subtitle: 《区域水环境污染数据分析实践》<br>Data analysis practice of regional water environment pollution
|
||
author: 苏命、王为东<br>中国科学院大学资源与环境学院<br>中国科学院生态环境研究中心
|
||
date: today
|
||
lang: zh
|
||
format:
|
||
revealjs:
|
||
theme: dark
|
||
slide-number: true
|
||
chalkboard:
|
||
buttons: true
|
||
preview-links: auto
|
||
lang: zh
|
||
toc: true
|
||
toc-depth: 1
|
||
toc-title: 大纲
|
||
logo: ./_extensions/inst/img/ucaslogo.png
|
||
css: ./_extensions/inst/css/revealjs.css
|
||
pointer:
|
||
key: "p"
|
||
color: "#32cd32"
|
||
pointerSize: 18
|
||
revealjs-plugins:
|
||
- pointer
|
||
filters:
|
||
- d2
|
||
---
|
||
|
||
```{r}
|
||
#| echo: false
|
||
knitr::opts_chunk$set(echo = TRUE)
|
||
source("../../coding/_common.R")
|
||
library(nycflights13)
|
||
library(tidyverse)
|
||
|
||
```
|
||
|
||
|
||
## `tidyverse`风格数据分析总体流程
|
||
|
||
![](../../image/data-science/transform.png)
|
||
|
||
|
||
## [dplyr cheatsheet](../../image/cheatsheet/data-transformation.pdf)
|
||
|
||
|
||
```{r}
|
||
#| echo: false
|
||
dwfun::ggsavep("../../image/cheatsheet/data-transformation.svg", loadit = TRUE)
|
||
```
|
||
|
||
|
||
|
||
## 查看数据
|
||
|
||
```{r}
|
||
flights
|
||
```
|
||
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
#| results: false
|
||
|
||
flights |>
|
||
select(year, month, day)
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
#| results: false
|
||
|
||
flights |>
|
||
select(year:day)
|
||
```
|
||
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(3:5)
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(!year:day)
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(-(year:day))
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(where(is.character))
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(!where(is.character)) |>
|
||
select(contains("_"))
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(tail_num = tailnum)
|
||
```
|
||
|
||
## 选择列
|
||
|
||
```{r}
|
||
flights |>
|
||
select(air_time, everything())
|
||
```
|
||
|
||
|
||
## 重命名
|
||
|
||
```{r}
|
||
flights |>
|
||
rename(tail_num = tailnum)
|
||
```
|
||
|
||
## 重命名
|
||
|
||
```{r}
|
||
flights |>
|
||
rename(年份 = 1) |>
|
||
rename(月份 = 2)
|
||
|
||
```
|
||
|
||
## 重命名
|
||
|
||
```{r}
|
||
flights |> select(1:4) |> head(n = 3)
|
||
# 重命名
|
||
flights |> select(1:4) |> head(n = 3) |>
|
||
rename_all(~c("c1", "c2", "c3", "c4"))
|
||
```
|
||
|
||
## 重命名
|
||
|
||
```{r}
|
||
flights |> select(1:4) |> head(n = 3)
|
||
# 重命名
|
||
flights |> select(1:4) |> head(n = 3) |>
|
||
rename_all(toupper)
|
||
```
|
||
|
||
|
||
## 重命名
|
||
|
||
```{r}
|
||
flights |> select(1:4) |> head(n = 3)
|
||
# 重命名
|
||
flights |> select(1:4) |> head(n = 3) |>
|
||
rename_all(~paste0(toupper(.), "_NEW"))
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
将含有下划线的列名中的下划线去掉。
|
||
|
||
|
||
```{r}
|
||
flights |> select(1:4) |> head(n = 3)
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
将`airqualitydf`中列名的单位信息去除(前5列)。
|
||
|
||
|
||
```{r}
|
||
airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2)
|
||
airqualitydf |> select(1:5)
|
||
```
|
||
|
||
|
||
|
||
## `filter`
|
||
|
||
```{r}
|
||
flights |>
|
||
filter(dep_delay > 120)
|
||
```
|
||
|
||
## filter 练习
|
||
|
||
Flights that departed on January 1.
|
||
|
||
```{r}
|
||
#| echo: false
|
||
flights |>
|
||
filter(month == 1 & day == 1)
|
||
```
|
||
|
||
## filter 练习
|
||
|
||
|
||
Select flights that departed in January or February
|
||
|
||
```{r}
|
||
#| echo: false
|
||
flights |>
|
||
filter(month %in% c(1, 2))
|
||
```
|
||
|
||
## filter 练习
|
||
|
||
```{r}
|
||
jan1 <- flights |>
|
||
filter(month == 1 & day == 1)
|
||
```
|
||
|
||
## filter
|
||
|
||
```{r}
|
||
#| error: true
|
||
#| eval: false
|
||
|
||
flights |>
|
||
filter(month = 1)
|
||
```
|
||
|
||
## filter
|
||
|
||
```{r}
|
||
flights |>
|
||
filter(month == 1 | 2)
|
||
```
|
||
|
||
## 排序
|
||
|
||
```{r}
|
||
flights |>
|
||
arrange(year, month, day, dep_time)
|
||
```
|
||
|
||
## 排序
|
||
|
||
```{r}
|
||
flights |>
|
||
arrange(desc(dep_delay))
|
||
```
|
||
|
||
## slice
|
||
|
||
```{r}
|
||
flights |> head(n = 5)
|
||
flights |> slice(1:5)
|
||
```
|
||
|
||
## slice
|
||
|
||
```{r}
|
||
flights |>
|
||
slice_max(dep_delay, n = 5)
|
||
```
|
||
|
||
## slice
|
||
|
||
```{r}
|
||
flights |>
|
||
slice_min(dep_delay, prop = 0.005)
|
||
```
|
||
|
||
## 排序练习
|
||
|
||
根据`origin`、`dest`、`air_time`倒序排序。
|
||
|
||
```{r}
|
||
#| echo: false
|
||
flights |>
|
||
arrange(origin, dest, desc(air_time)) |>
|
||
select(origin, dest, air_time, everything())
|
||
```
|
||
|
||
|
||
## 去重
|
||
|
||
```{r}
|
||
# Remove duplicate rows, if any
|
||
flights |>
|
||
distinct()
|
||
```
|
||
|
||
## 去重
|
||
|
||
```{r}
|
||
# Find all unique origin and destination pairs
|
||
flights |>
|
||
distinct(origin, dest)
|
||
```
|
||
|
||
## 去重
|
||
|
||
```{r}
|
||
flights |>
|
||
distinct(origin, dest, .keep_all = TRUE)
|
||
```
|
||
|
||
## 计数
|
||
|
||
```{r}
|
||
flights |>
|
||
count(origin, dest, sort = TRUE)
|
||
```
|
||
|
||
|
||
## 计数-练习
|
||
|
||
统计每月的航班数量。
|
||
|
||
```{r}
|
||
#| echo: false
|
||
flights |>
|
||
count(year, month, sort = TRUE)
|
||
```
|
||
|
||
|
||
## 计算新变量
|
||
|
||
```{r}
|
||
flights |>
|
||
mutate(
|
||
gain = dep_delay - arr_delay,
|
||
speed = distance / air_time * 60
|
||
)
|
||
```
|
||
|
||
## 计算新变量
|
||
|
||
```{r}
|
||
flights |>
|
||
mutate(
|
||
gain = dep_delay - arr_delay,
|
||
speed = distance / air_time * 60,
|
||
.before = 1
|
||
)
|
||
```
|
||
|
||
## 计算新变量
|
||
|
||
```{r}
|
||
flights |>
|
||
mutate(
|
||
gain = dep_delay - arr_delay,
|
||
speed = distance / air_time * 60,
|
||
.after = day
|
||
)
|
||
```
|
||
|
||
## 计算新变量
|
||
|
||
```{r}
|
||
flights |>
|
||
mutate(
|
||
gain = dep_delay - arr_delay,
|
||
hours = air_time / 60,
|
||
gain_per_hour = gain / hours,
|
||
.keep = "used"
|
||
)
|
||
```
|
||
|
||
|
||
|
||
|
||
## 列排序
|
||
|
||
```{r}
|
||
flights |>
|
||
relocate(time_hour, air_time)
|
||
```
|
||
|
||
## 列排序
|
||
|
||
```{r}
|
||
#| results: false
|
||
|
||
flights |>
|
||
relocate(year:dep_time, .after = time_hour)
|
||
flights |>
|
||
relocate(starts_with("arr"), .before = dep_time)
|
||
flights |>
|
||
select(starts_with("arr"), everything())
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。
|
||
|
||
```{r}
|
||
flights |>
|
||
filter(dest == "IAH") |>
|
||
mutate(speed = distance / air_time * 60) |>
|
||
select(year:day, dep_time, carrier, flight, speed) |>
|
||
arrange(desc(speed))
|
||
```
|
||
|
||
## 练习
|
||
|
||
计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。
|
||
|
||
```{r}
|
||
#| results: false
|
||
|
||
flights1 <- filter(flights, dest == "IAH")
|
||
flights2 <- mutate(flights1, speed = distance / air_time * 60)
|
||
flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed)
|
||
arrange(flights3, desc(speed))
|
||
```
|
||
|
||
## 练习
|
||
|
||
计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。
|
||
|
||
```{r}
|
||
flights |>
|
||
filter(dest == "IAH") |>
|
||
mutate(speed = distance / air_time * 60) |>
|
||
select(year:day, dep_time, carrier, flight, speed) |>
|
||
arrange(desc(speed))
|
||
```
|
||
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
|
||
library(tidyverse)
|
||
|
||
mtcars %>%
|
||
group_by(cyl) %>%
|
||
summarize(n = n())
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
group_by(month)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
group_by(month) |>
|
||
summarize(
|
||
avg_delay = mean(dep_delay)
|
||
)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
group_by(month) |>
|
||
summarize(
|
||
avg_delay = mean(dep_delay, na.rm = TRUE)
|
||
)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
group_by(month) |>
|
||
summarize(
|
||
avg_delay = mean(dep_delay, na.rm = TRUE),
|
||
n = n()
|
||
)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
group_by(dest) |>
|
||
slice_max(arr_delay, n = 1) |>
|
||
relocate(dest)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
|
||
flights |>
|
||
filter(dest == "IAH") |>
|
||
group_by(year, month, day) |>
|
||
summarize(
|
||
arr_delay = mean(arr_delay, na.rm = TRUE)
|
||
)
|
||
```
|
||
|
||
|
||
## 分组
|
||
|
||
```{r}
|
||
daily <- flights |>
|
||
group_by(year, month, day)
|
||
daily
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
daily_flights <- daily |>
|
||
summarize(n = n())
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
#| results: false
|
||
|
||
daily_flights <- daily |>
|
||
summarize(
|
||
n = n(),
|
||
.groups = "drop_last"
|
||
)
|
||
```
|
||
|
||
|
||
|
||
## 删除分组
|
||
|
||
```{r}
|
||
daily |> ungroup()
|
||
```
|
||
|
||
## 删除分组
|
||
|
||
```{r}
|
||
daily |>
|
||
ungroup() |>
|
||
summarize(
|
||
avg_delay = mean(dep_delay, na.rm = TRUE),
|
||
flights = n()
|
||
)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
summarize(
|
||
delay = mean(dep_delay, na.rm = TRUE),
|
||
n = n(),
|
||
.by = month
|
||
)
|
||
```
|
||
|
||
## 分组统计
|
||
|
||
```{r}
|
||
flights |>
|
||
summarize(
|
||
delay = mean(dep_delay, na.rm = TRUE),
|
||
n = n(),
|
||
.by = c(origin, dest)
|
||
)
|
||
```
|
||
|
||
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
df <- tibble(
|
||
x = 1:5,
|
||
y = c("a", "b", "a", "a", "b"),
|
||
z = c("K", "K", "L", "L", "K")
|
||
)
|
||
df
|
||
```
|
||
|
||
```{r}
|
||
#| eval: false
|
||
|
||
df |> arrange(y)
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df
|
||
```
|
||
|
||
```{r}
|
||
#| eval: false
|
||
df |>
|
||
group_by(y) |>
|
||
summarize(mean_x = mean(x))
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df
|
||
```
|
||
```{r}
|
||
#| eval: false
|
||
|
||
df |>
|
||
group_by(y, z) |>
|
||
summarize(mean_x = mean(x))
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df
|
||
```
|
||
```{r}
|
||
#| eval: false
|
||
|
||
df |>
|
||
group_by(y, z) |>
|
||
summarize(mean_x = mean(x), .groups = "drop")
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df
|
||
```
|
||
|
||
```{r}
|
||
#| eval: false
|
||
df |>
|
||
group_by(y, z) |>
|
||
summarize(mean_x = mean(x))
|
||
|
||
df |>
|
||
group_by(y, z) |>
|
||
mutate(mean_x = mean(x))
|
||
```
|
||
|
||
|
||
|
||
|
||
## 练习
|
||
|
||
- 计算不同采样点的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。
|
||
- 计算各小时全国的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。
|
||
- 计算不同采样点各小时的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。
|
||
- 计算各采样点中CO浓度小于全国平均CO浓度的占比。
|
||
- 找出全国各采样点中CO浓度小于全国平均CO浓度的占比最高的10个采样点。
|
||
|
||
```{r}
|
||
airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx",
|
||
sheet = 2)
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
按月统计dep_delay最大的3个航班的航班号(flight),用逗号连接。
|
||
|
||
```{r}
|
||
#| echo: false
|
||
flights |>
|
||
group_by(year, month) |>
|
||
slice_max(dep_delay, n = 3) |>
|
||
summarize(flight = paste(paste0(carrier, flight), collapse = ", ")) |>
|
||
knitr::kable()
|
||
```
|
||
|
||
|
||
|
||
|
||
## 数据变形示意图
|
||
|
||
```{r}
|
||
billboard
|
||
knitr::include_graphics("../../image/tidy-data/variables.png", dpi = 270)
|
||
```
|
||
|
||
## 数据变形
|
||
|
||
```{r}
|
||
billboard |>
|
||
pivot_longer(
|
||
cols = starts_with("wk"),
|
||
names_to = "week",
|
||
values_to = "rank",
|
||
values_drop_na = TRUE
|
||
)
|
||
```
|
||
|
||
## 数据变形
|
||
|
||
```{r}
|
||
billboard_longer <- billboard |>
|
||
pivot_longer(
|
||
cols = starts_with("wk"),
|
||
names_to = "week",
|
||
values_to = "rank",
|
||
values_drop_na = TRUE
|
||
) |>
|
||
mutate(
|
||
week = parse_number(week)
|
||
)
|
||
billboard_longer
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df <- tribble(
|
||
~id, ~bp1, ~bp2,
|
||
"A", 100, 120,
|
||
"B", 140, 115,
|
||
"C", 120, 125
|
||
)
|
||
df
|
||
```
|
||
|
||
将以上数据(`df`)转换为如下形式。
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df |>
|
||
pivot_longer(
|
||
cols = bp1:bp2,
|
||
names_to = "measurement",
|
||
values_to = "value"
|
||
)
|
||
```
|
||
|
||
## 练习
|
||
|
||
请转换如下`iris`数据。
|
||
|
||
```{r}
|
||
#| echo: false
|
||
as_tibble(head(iris, n = 3))
|
||
cat("转为如下形式:")
|
||
iris |>
|
||
pivot_longer(cols = c(Sepal.Length,
|
||
Sepal.Width,
|
||
Petal.Length,
|
||
Petal.Width),
|
||
names_to = "flower_attr",
|
||
values_to = "attr_value") |>
|
||
head()
|
||
```
|
||
|
||
|
||
|
||
|
||
## 数据变形示意图2
|
||
|
||
```{r}
|
||
who2
|
||
knitr::include_graphics("../../image/tidy-data/multiple-names.png", dpi = 270)
|
||
```
|
||
|
||
|
||
## 数据变形
|
||
|
||
```{r}
|
||
who2 |>
|
||
pivot_longer(
|
||
cols = !(country:year),
|
||
names_to = c("diagnosis", "gender", "age"),
|
||
names_sep = "_",
|
||
values_to = "count"
|
||
)
|
||
```
|
||
|
||
|
||
## 数据变形示意图
|
||
|
||
```{r}
|
||
household
|
||
knitr::include_graphics("../../image/tidy-data/names-and-values.png", dpi = 270)
|
||
```
|
||
|
||
## 数据变形
|
||
|
||
```{r}
|
||
household |>
|
||
pivot_longer(
|
||
cols = !family,
|
||
names_to = c(".value", "child"),
|
||
names_sep = "_",
|
||
values_drop_na = TRUE
|
||
)
|
||
```
|
||
|
||
|
||
## 查看数据
|
||
|
||
```{r}
|
||
cms_patient_experience
|
||
```
|
||
|
||
## 查看数据
|
||
|
||
```{r}
|
||
cms_patient_experience |>
|
||
distinct(measure_cd, measure_title)
|
||
```
|
||
|
||
## 数据变形(变宽)
|
||
|
||
```{r}
|
||
cms_patient_experience |>
|
||
pivot_wider(
|
||
names_from = measure_cd,
|
||
values_from = prf_rate
|
||
)
|
||
```
|
||
|
||
## 数据变形(变宽)
|
||
|
||
```{r}
|
||
cms_patient_experience |>
|
||
pivot_wider(
|
||
id_cols = starts_with("org"),
|
||
names_from = measure_cd,
|
||
values_from = prf_rate
|
||
)
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
df <- tribble(
|
||
~id, ~measurement, ~value,
|
||
"A", "bp1", 100,
|
||
"B", "bp1", 140,
|
||
"B", "bp2", 115,
|
||
"A", "bp2", 120,
|
||
"A", "bp3", 105
|
||
)
|
||
```
|
||
|
||
|
||
变形成如下形式:
|
||
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df |>
|
||
pivot_wider(
|
||
names_from = measurement,
|
||
values_from = value
|
||
)
|
||
```
|
||
|
||
|
||
## 练习:变宽
|
||
|
||
```{r}
|
||
df <- tribble(
|
||
~id, ~measurement, ~value,
|
||
"A", "bp1", 100,
|
||
"A", "bp1", 102,
|
||
"A", "bp2", 120,
|
||
"B", "bp1", 140,
|
||
"B", "bp2", 115
|
||
)
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
df |>
|
||
pivot_wider(
|
||
names_from = measurement,
|
||
values_from = value
|
||
)
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
df |>
|
||
group_by(id, measurement) |>
|
||
summarize(n = n(), .groups = "drop") |>
|
||
filter(n > 1)
|
||
```
|
||
|
||
|
||
## nest,套嵌数据框
|
||
|
||
```{r}
|
||
#| echo: false
|
||
df <- tibble(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1)
|
||
df
|
||
```
|
||
|
||
```{r}
|
||
df %>% nest(data = c(y, z))
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
Specify variables to nest by (rather than variables to nest) using `.by`
|
||
|
||
```{r}
|
||
df %>% nest(.by = x)
|
||
```
|
||
|
||
|
||
## nest,套嵌数据框
|
||
|
||
In this case, since `...` isn't used you can specify the resulting column name with `.key`
|
||
|
||
```{r}
|
||
df %>% nest(.by = x, .key = "cols")
|
||
```
|
||
|
||
|
||
## nest,套嵌数据框
|
||
|
||
Use tidyselect syntax and helpers, just like in `dplyr::select()`
|
||
|
||
```{r}
|
||
df %>% nest(data = any_of(c("y", "z")))
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
`...` and `.by` can be used together to drop columns you no longer need,
|
||
or to include the columns you are nesting by in the inner data frame too.
|
||
This drops `z`:
|
||
|
||
```{r}
|
||
df %>% nest(data = y, .by = x)
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
This includes `x` in the inner data frame:
|
||
|
||
```{r}
|
||
df %>% nest(data = everything(), .by = x)
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
Multiple nesting structures can be specified at once
|
||
|
||
```{r}
|
||
iris %>%
|
||
nest(petal = starts_with("Petal"), sepal = starts_with("Sepal"))
|
||
```
|
||
|
||
|
||
## nest,套嵌数据框
|
||
|
||
```{r}
|
||
iris %>%
|
||
nest(width = contains("Width"), length = contains("Length"))
|
||
```
|
||
|
||
|
||
## nest,套嵌数据框
|
||
|
||
Nesting a grouped data frame nests all variables apart from the group vars
|
||
|
||
```{r}
|
||
fish_encounters
|
||
fish_encounters %>%
|
||
dplyr::group_by(fish) %>%
|
||
nest()
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
That is similar to `nest(.by = )`, except here the result isn't grouped
|
||
|
||
```{r}
|
||
fish_encounters %>%
|
||
nest(.by = fish)
|
||
```
|
||
|
||
## nest,套嵌数据框
|
||
|
||
Nesting is often useful for creating per group models
|
||
|
||
```{r}
|
||
mtcars %>%
|
||
nest(.by = cyl) %>%
|
||
dplyr::mutate(models = lapply(data, function(df) lm(mpg ~ wt, data = df)))
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
```{r}
|
||
#| echo: false
|
||
(airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx",
|
||
sheet = 2))
|
||
```
|
||
|
||
```{r}
|
||
airqualitydf
|
||
airqualitynestdf <- airqualitydf |>
|
||
nest(sitedf = -site)
|
||
```
|
||
|
||
## `nest`与`group_by`联用
|
||
|
||
```{r}
|
||
#| echo: false
|
||
iris %>%
|
||
group_by(Species) %>%
|
||
nest(.key = "spdf")
|
||
```
|
||
|
||
## unnest
|
||
|
||
```{r}
|
||
airqualitynestdf |> unnest(sitedf)
|
||
```
|
||
|
||
|
||
|
||
## `purrr`包
|
||
|
||
- map():依次应用一元函数到一个序列的每个元素上,基本等同 lapply()
|
||
- map2():依次应用二元函数到两个序列的每对元素上
|
||
- pmap():应用多元函数到多个序列的每组元素上,可以实现对数据框逐行迭代
|
||
- map 系列默认返回列表型,可根据想要的返回类型添加后缀:_int, _dbl, _lgl, _chr, _df, 甚至可以接着对返回的数据框df做行/列合并:_dfr, _dfc
|
||
- 如果只想要函数依次作用的过程,而不需要返回结果,改用 walk 系列即可
|
||
- 所应用的函数,有 purrr公式风格简写(匿名函数),支持一元,二元,多元函数
|
||
- purrr 包中的其它有用函数
|
||
|
||
## `purrr`包
|
||
|
||
- `map_chr(.x, .f)`: 返回字符型向量
|
||
- `map_lgl(.x, .f)`: 返回逻辑型向量
|
||
- `map_dbl(.x, .f)`: 返回实数型向量
|
||
- `map_int(.x, .f)`: 返回整数型向量
|
||
- `map_dfr(.x, .f)`: 返回数据框列表,再 bind_rows 按行合并为一个数据框
|
||
- `map_dfc(.x, .f)`: 返回数据框列表,再 bind_cols 按列合并为一个数据框
|
||
|
||
|
||
## `purrr`包-cheatsheet
|
||
|
||
```{r}
|
||
dwfun::ggsavep("../../image/cheatsheet/purrr.svg", loadit = TRUE)
|
||
```
|
||
|
||
[purrr](../../image/cheatsheet/purrr.pdf)
|
||
|
||
|
||
## `purrr`包
|
||
|
||
生成从1到10的10组随机数,每组随机数个数为100,均值依次为1到10,标准差为1,并存储在数据框中。
|
||
|
||
```{r}
|
||
res <- list()
|
||
for (i in 1:10) {
|
||
res[[i]] <- tibble(随机数 = rnorm(n = 100, mean = i, sd = 1))
|
||
}
|
||
res
|
||
|
||
```
|
||
|
||
|
||
|
||
|
||
## `purrr`包
|
||
|
||
生成从1到10的10组随机数,每组随机数个数为100,均值依次为1到10,标准差为1,并存储在数据框中。
|
||
|
||
```{r}
|
||
1:10 |>
|
||
purrr::map(~tibble(随机数 = rnorm(n = 100, mean = .x, sd = 1)))
|
||
```
|
||
|
||
## purrr
|
||
|
||
```{r}
|
||
library(purrr)
|
||
mtcars |>
|
||
split(mtcars$cyl) |> # from base R
|
||
map(\(df) lm(mpg ~ wt, data = df)) |>
|
||
map(summary) %>%
|
||
map_dbl("r.squared")
|
||
```
|
||
|
||
|
||
## 练习:
|
||
|
||
计算每月最后一个周六的航班数:
|
||
|
||
```{r}
|
||
flights
|
||
```
|
||
|
||
## `tidyr` + `purrr`包
|
||
|
||
任务:展示不同城市间的大气指标散点图
|
||
|
||
```{r}
|
||
(airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx",
|
||
sheet = 2))
|
||
```
|
||
|
||
## join
|
||
|
||
Perform left join
|
||
|
||
```{r}
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
left_join(df1, df2, by = "id")
|
||
```
|
||
|
||
## left join
|
||
|
||
Create sample data frames with non-matching rows
|
||
|
||
```{r}
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
left_join(df2, df1, by = "id")
|
||
```
|
||
|
||
## left join
|
||
|
||
|
||
Create sample data frames with multiple columns
|
||
|
||
```{r}
|
||
df1 <- data.frame(id1 = c(1, 2, 3), id2 = c("A", "B", "C"), value1 = letters[1:3])
|
||
df2 <- data.frame(id1 = c(2, 3, 4), id2 = c("B", "C", "D"), value2 = LETTERS[1:3])
|
||
# Perform left join
|
||
left_join(df1, df2, by = c("id1", "id2"))
|
||
```
|
||
|
||
## right join
|
||
|
||
|
||
```{r}
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
|
||
# Perform right join
|
||
right_join(df1, df2, by = "id")
|
||
```
|
||
|
||
|
||
## inner join
|
||
|
||
```{r}
|
||
# Create sample data frames
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
# Perform inner join
|
||
inner_join(df1, df2, by = "id")
|
||
```
|
||
|
||
|
||
## full join
|
||
|
||
```{r}
|
||
# Create sample data frames
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
# Perform inner join
|
||
full_join(df1, df2, by = "id")
|
||
```
|
||
|
||
## semi join
|
||
|
||
Create sample data frames
|
||
|
||
```{r}
|
||
(df1 <- data.frame(id = 1:5, value1 = letters[1:5]))
|
||
(df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3]))
|
||
# Perform semi join
|
||
semi_join(df1, df2, by = "id")
|
||
```
|
||
|
||
|
||
## 练习
|
||
|
||
合并`airquality.xlsx`中的数据。
|
||
|
||
|
||
|
||
## 练习
|
||
|
||
统计各城市白天与晚上的大气质量差异,计算不同指标差异最大的10个城市。
|
||
|
||
|
||
|
||
|
||
|
||
|
||
## 欢迎讨论!{.center}
|
||
|
||
|
||
`r rmdify::slideend(wechat = FALSE, type = "public", tel = FALSE, thislink = "https://drwater.rcees.ac.cn/course/public/RWEP/@PUB/SD/")`
|
||
|