--- title: "Data Transform" subtitle: 《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution author: 苏命、王为东
中国科学院大学资源与环境学院
中国科学院生态环境研究中心 date: today lang: zh format: revealjs: theme: dark slide-number: true chalkboard: buttons: true preview-links: auto lang: zh toc: true toc-depth: 1 toc-title: 大纲 logo: ./_extensions/inst/img/ucaslogo.png css: ./_extensions/inst/css/revealjs.css pointer: key: "p" color: "#32cd32" pointerSize: 18 revealjs-plugins: - pointer filters: - d2 --- ```{r} #| echo: false knitr::opts_chunk$set(echo = TRUE) source("../../coding/_common.R") library(nycflights13) library(tidyverse) ``` ## `tidyverse`风格数据分析总体流程 ![](../../image/data-science/transform.png) ## [dplyr cheatsheet](../../image/cheatsheet/data-transformation.pdf) ```{r} #| echo: false dwfun::ggsavep("../../image/cheatsheet/data-transformation.svg", loadit = TRUE) ``` ## 查看数据 ```{r} flights ``` ## 选择列 ```{r} #| results: false flights |> select(year, month, day) ``` ## 选择列 ```{r} #| results: false flights |> select(year:day) ``` ## 选择列 ```{r} flights |> select(3:5) ``` ## 选择列 ```{r} flights |> select(!year:day) ``` ## 选择列 ```{r} flights |> select(-(year:day)) ``` ## 选择列 ```{r} flights |> select(where(is.character)) ``` ## 选择列 ```{r} flights |> select(!where(is.character)) |> select(contains("_")) ``` ## 选择列 ```{r} flights |> select(tail_num = tailnum) ``` ## 选择列 ```{r} flights |> select(air_time, everything()) ``` ## 重命名 ```{r} flights |> rename(tail_num = tailnum) ``` ## 重命名 ```{r} flights |> rename(年份 = 1) |> rename(月份 = 2) ``` ## 重命名 ```{r} flights |> select(1:4) |> head(n = 3) # 重命名 flights |> select(1:4) |> head(n = 3) |> rename_all(~c("c1", "c2", "c3", "c4")) ``` ## 重命名 ```{r} flights |> select(1:4) |> head(n = 3) # 重命名 flights |> select(1:4) |> head(n = 3) |> rename_all(toupper) ``` ## 重命名 ```{r} flights |> select(1:4) |> head(n = 3) # 重命名 flights |> select(1:4) |> head(n = 3) |> rename_all(~paste0(toupper(.), "_NEW")) ``` ## 练习 将含有下划线的列名中的下划线去掉。 ```{r} flights |> select(1:4) |> head(n = 3) ``` ## 练习 将`airqualitydf`中列名的单位信息去除(前5列)。 ```{r} airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2) airqualitydf |> select(1:5) ``` ## `filter` ```{r} flights |> filter(dep_delay > 120) ``` ## filter 练习 Flights that departed on January 1. ```{r} #| echo: false flights |> filter(month == 1 & day == 1) ``` ## filter 练习 Select flights that departed in January or February ```{r} #| echo: false flights |> filter(month %in% c(1, 2)) ``` ## filter 练习 ```{r} jan1 <- flights |> filter(month == 1 & day == 1) ``` ## filter ```{r} #| error: true #| eval: false flights |> filter(month = 1) ``` ## filter ```{r} flights |> filter(month == 1 | 2) ``` ## 排序 ```{r} flights |> arrange(year, month, day, dep_time) ``` ## 排序 ```{r} flights |> arrange(desc(dep_delay)) ``` ## slice ```{r} flights |> head(n = 5) flights |> slice(1:5) ``` ## slice ```{r} flights |> slice_max(dep_delay, n = 5) ``` ## slice ```{r} flights |> slice_min(dep_delay, prop = 0.005) ``` ## 排序练习 根据`origin`、`dest`、`air_time`倒序排序。 ```{r} #| echo: false flights |> arrange(origin, dest, desc(air_time)) |> select(origin, dest, air_time, everything()) ``` ## 去重 ```{r} # Remove duplicate rows, if any flights |> distinct() ``` ## 去重 ```{r} # Find all unique origin and destination pairs flights |> distinct(origin, dest) ``` ## 去重 ```{r} flights |> distinct(origin, dest, .keep_all = TRUE) ``` ## 计数 ```{r} flights |> count(origin, dest, sort = TRUE) ``` ## 计数-练习 统计每月的航班数量。 ```{r} #| echo: false flights |> count(year, month, sort = TRUE) ``` ## 计算新变量 ```{r} flights |> mutate( gain = dep_delay - arr_delay, speed = distance / air_time * 60 ) ``` ## 计算新变量 ```{r} flights |> mutate( gain = dep_delay - arr_delay, speed = distance / air_time * 60, .before = 1 ) ``` ## 计算新变量 ```{r} flights |> mutate( gain = dep_delay - arr_delay, speed = distance / air_time * 60, .after = day ) ``` ## 计算新变量 ```{r} flights |> mutate( gain = dep_delay - arr_delay, hours = air_time / 60, gain_per_hour = gain / hours, .keep = "used" ) ``` ## 列排序 ```{r} flights |> relocate(time_hour, air_time) ``` ## 列排序 ```{r} #| results: false flights |> relocate(year:dep_time, .after = time_hour) flights |> relocate(starts_with("arr"), .before = dep_time) flights |> select(starts_with("arr"), everything()) ``` ## 练习 计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。 ```{r} flights |> filter(dest == "IAH") |> mutate(speed = distance / air_time * 60) |> select(year:day, dep_time, carrier, flight, speed) |> arrange(desc(speed)) ``` ## 练习 计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。 ```{r} #| results: false flights1 <- filter(flights, dest == "IAH") flights2 <- mutate(flights1, speed = distance / air_time * 60) flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed) arrange(flights3, desc(speed)) ``` ## 练习 计算目的地为IAH,按飞行速度排序的表格,保留year:day, `dep_time`, carrier, flight与speed列。 ```{r} flights |> filter(dest == "IAH") |> mutate(speed = distance / air_time * 60) |> select(year:day, dep_time, carrier, flight, speed) |> arrange(desc(speed)) ``` ## 分组统计 ```{r} library(tidyverse) mtcars %>% group_by(cyl) %>% summarize(n = n()) ``` ## 分组统计 ```{r} flights |> group_by(month) ``` ## 分组统计 ```{r} flights |> group_by(month) |> summarize( avg_delay = mean(dep_delay) ) ``` ## 分组统计 ```{r} flights |> group_by(month) |> summarize( avg_delay = mean(dep_delay, na.rm = TRUE) ) ``` ## 分组统计 ```{r} flights |> group_by(month) |> summarize( avg_delay = mean(dep_delay, na.rm = TRUE), n = n() ) ``` ## 分组统计 ```{r} flights |> group_by(dest) |> slice_max(arr_delay, n = 1) |> relocate(dest) ``` ## 分组统计 ```{r} flights |> filter(dest == "IAH") |> group_by(year, month, day) |> summarize( arr_delay = mean(arr_delay, na.rm = TRUE) ) ``` ## 分组 ```{r} daily <- flights |> group_by(year, month, day) daily ``` ## 分组统计 ```{r} daily_flights <- daily |> summarize(n = n()) ``` ## 分组统计 ```{r} #| results: false daily_flights <- daily |> summarize( n = n(), .groups = "drop_last" ) ``` ## 删除分组 ```{r} daily |> ungroup() ``` ## 删除分组 ```{r} daily |> ungroup() |> summarize( avg_delay = mean(dep_delay, na.rm = TRUE), flights = n() ) ``` ## 分组统计 ```{r} flights |> summarize( delay = mean(dep_delay, na.rm = TRUE), n = n(), .by = month ) ``` ## 分组统计 ```{r} flights |> summarize( delay = mean(dep_delay, na.rm = TRUE), n = n(), .by = c(origin, dest) ) ``` ## 练习 ```{r} df <- tibble( x = 1:5, y = c("a", "b", "a", "a", "b"), z = c("K", "K", "L", "L", "K") ) df ``` ```{r} #| eval: false df |> arrange(y) ``` ## 练习 ```{r} #| echo: false df ``` ```{r} #| eval: false df |> group_by(y) |> summarize(mean_x = mean(x)) ``` ## 练习 ```{r} #| echo: false df ``` ```{r} #| eval: false df |> group_by(y, z) |> summarize(mean_x = mean(x)) ``` ## 练习 ```{r} #| echo: false df ``` ```{r} #| eval: false df |> group_by(y, z) |> summarize(mean_x = mean(x), .groups = "drop") ``` ## 练习 ```{r} #| echo: false df ``` ```{r} #| eval: false df |> group_by(y, z) |> summarize(mean_x = mean(x)) df |> group_by(y, z) |> mutate(mean_x = mean(x)) ``` ## 练习 - 计算不同采样点的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。 - 计算各小时全国的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。 - 计算不同采样点各小时的平均CO浓度、最大CO浓度、最小CO浓度、中位数CO浓度(`CO_mg/m3`)。 - 计算各采样点中CO浓度小于全国平均CO浓度的占比。 - 找出全国各采样点中CO浓度小于全国平均CO浓度的占比最高的10个采样点。 ```{r} airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2) ``` ## 练习 按月统计dep_delay最大的3个航班的航班号(flight),用逗号连接。 ```{r} #| echo: false flights |> group_by(year, month) |> slice_max(dep_delay, n = 3) |> summarize(flight = paste(paste0(carrier, flight), collapse = ", ")) |> knitr::kable() ``` ## 数据变形示意图 ```{r} billboard knitr::include_graphics("../../image/tidy-data/variables.png", dpi = 270) ``` ## 数据变形 ```{r} billboard |> pivot_longer( cols = starts_with("wk"), names_to = "week", values_to = "rank", values_drop_na = TRUE ) ``` ## 数据变形 ```{r} billboard_longer <- billboard |> pivot_longer( cols = starts_with("wk"), names_to = "week", values_to = "rank", values_drop_na = TRUE ) |> mutate( week = parse_number(week) ) billboard_longer ``` ## 练习 ```{r} #| echo: false df <- tribble( ~id, ~bp1, ~bp2, "A", 100, 120, "B", 140, 115, "C", 120, 125 ) df ``` 将以上数据(`df`)转换为如下形式。 ```{r} #| echo: false df |> pivot_longer( cols = bp1:bp2, names_to = "measurement", values_to = "value" ) ``` ## 练习 请转换如下`iris`数据。 ```{r} #| echo: false as_tibble(head(iris, n = 3)) cat("转为如下形式:") iris |> pivot_longer(cols = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width), names_to = "flower_attr", values_to = "attr_value") |> head() ``` ## 数据变形示意图2 ```{r} who2 knitr::include_graphics("../../image/tidy-data/multiple-names.png", dpi = 270) ``` ## 数据变形 ```{r} who2 |> pivot_longer( cols = !(country:year), names_to = c("diagnosis", "gender", "age"), names_sep = "_", values_to = "count" ) ``` ## 数据变形示意图 ```{r} household knitr::include_graphics("../../image/tidy-data/names-and-values.png", dpi = 270) ``` ## 数据变形 ```{r} household |> pivot_longer( cols = !family, names_to = c(".value", "child"), names_sep = "_", values_drop_na = TRUE ) ``` ## 查看数据 ```{r} cms_patient_experience ``` ## 查看数据 ```{r} cms_patient_experience |> distinct(measure_cd, measure_title) ``` ## 数据变形(变宽) ```{r} cms_patient_experience |> pivot_wider( names_from = measure_cd, values_from = prf_rate ) ``` ## 数据变形(变宽) ```{r} cms_patient_experience |> pivot_wider( id_cols = starts_with("org"), names_from = measure_cd, values_from = prf_rate ) ``` ## 练习 ```{r} df <- tribble( ~id, ~measurement, ~value, "A", "bp1", 100, "B", "bp1", 140, "B", "bp2", 115, "A", "bp2", 120, "A", "bp3", 105 ) ``` 变形成如下形式: ```{r} #| echo: false df |> pivot_wider( names_from = measurement, values_from = value ) ``` ## 练习:变宽 ```{r} df <- tribble( ~id, ~measurement, ~value, "A", "bp1", 100, "A", "bp1", 102, "A", "bp2", 120, "B", "bp1", 140, "B", "bp2", 115 ) ``` ## 练习 ```{r} df |> pivot_wider( names_from = measurement, values_from = value ) ``` ## 练习 ```{r} df |> group_by(id, measurement) |> summarize(n = n(), .groups = "drop") |> filter(n > 1) ``` ## nest,套嵌数据框 ```{r} #| echo: false df <- tibble(x = c(1, 1, 1, 2, 2, 3), y = 1:6, z = 6:1) df ``` ```{r} df %>% nest(data = c(y, z)) ``` ## nest,套嵌数据框 Specify variables to nest by (rather than variables to nest) using `.by` ```{r} df %>% nest(.by = x) ``` ## nest,套嵌数据框 In this case, since `...` isn't used you can specify the resulting column name with `.key` ```{r} df %>% nest(.by = x, .key = "cols") ``` ## nest,套嵌数据框 Use tidyselect syntax and helpers, just like in `dplyr::select()` ```{r} df %>% nest(data = any_of(c("y", "z"))) ``` ## nest,套嵌数据框 `...` and `.by` can be used together to drop columns you no longer need, or to include the columns you are nesting by in the inner data frame too. This drops `z`: ```{r} df %>% nest(data = y, .by = x) ``` ## nest,套嵌数据框 This includes `x` in the inner data frame: ```{r} df %>% nest(data = everything(), .by = x) ``` ## nest,套嵌数据框 Multiple nesting structures can be specified at once ```{r} iris %>% nest(petal = starts_with("Petal"), sepal = starts_with("Sepal")) ``` ## nest,套嵌数据框 ```{r} iris %>% nest(width = contains("Width"), length = contains("Length")) ``` ## nest,套嵌数据框 Nesting a grouped data frame nests all variables apart from the group vars ```{r} fish_encounters fish_encounters %>% dplyr::group_by(fish) %>% nest() ``` ## nest,套嵌数据框 That is similar to `nest(.by = )`, except here the result isn't grouped ```{r} fish_encounters %>% nest(.by = fish) ``` ## nest,套嵌数据框 Nesting is often useful for creating per group models ```{r} mtcars %>% nest(.by = cyl) %>% dplyr::mutate(models = lapply(data, function(df) lm(mpg ~ wt, data = df))) ``` ## 练习 ```{r} #| echo: false (airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2)) ``` ```{r} airqualitydf airqualitynestdf <- airqualitydf |> nest(sitedf = -site) ``` ## `nest`与`group_by`联用 ```{r} #| echo: false iris %>% group_by(Species) %>% nest(.key = "spdf") ``` ## unnest ```{r} airqualitynestdf |> unnest(sitedf) ``` ## `purrr`包 - map():依次应用一元函数到一个序列的每个元素上,基本等同 lapply() - map2():依次应用二元函数到两个序列的每对元素上 - pmap():应用多元函数到多个序列的每组元素上,可以实现对数据框逐行迭代 - map 系列默认返回列表型,可根据想要的返回类型添加后缀:_int, _dbl, _lgl, _chr, _df, 甚至可以接着对返回的数据框df做行/列合并:_dfr, _dfc - 如果只想要函数依次作用的过程,而不需要返回结果,改用 walk 系列即可 - 所应用的函数,有 purrr公式风格简写(匿名函数),支持一元,二元,多元函数 - purrr 包中的其它有用函数 ## `purrr`包 - `map_chr(.x, .f)`: 返回字符型向量 - `map_lgl(.x, .f)`: 返回逻辑型向量 - `map_dbl(.x, .f)`: 返回实数型向量 - `map_int(.x, .f)`: 返回整数型向量 - `map_dfr(.x, .f)`: 返回数据框列表,再 bind_rows 按行合并为一个数据框 - `map_dfc(.x, .f)`: 返回数据框列表,再 bind_cols 按列合并为一个数据框 ## `purrr`包-cheatsheet ```{r} dwfun::ggsavep("../../image/cheatsheet/purrr.svg", loadit = TRUE) ``` [purrr](../../image/cheatsheet/purrr.pdf) ## `purrr`包 生成从1到10的10组随机数,每组随机数个数为100,均值依次为1到10,标准差为1,并存储在数据框中。 ```{r} res <- list() for (i in 1:10) { res[[i]] <- tibble(随机数 = rnorm(n = 100, mean = i, sd = 1)) } res ``` ## `purrr`包 生成从1到10的10组随机数,每组随机数个数为100,均值依次为1到10,标准差为1,并存储在数据框中。 ```{r} 1:10 |> purrr::map(~tibble(随机数 = rnorm(n = 100, mean = .x, sd = 1))) ``` ## purrr ```{r} library(purrr) mtcars |> split(mtcars$cyl) |> # from base R map(\(df) lm(mpg ~ wt, data = df)) |> map(summary) %>% map_dbl("r.squared") ``` ## 练习: 计算每月最后一个周六的航班数: ```{r} flights ``` ## `tidyr` + `purrr`包 任务:展示不同城市间的大气指标散点图 ```{r} (airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2)) ``` ## join Perform left join ```{r} (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) left_join(df1, df2, by = "id") ``` ## left join Create sample data frames with non-matching rows ```{r} (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) left_join(df2, df1, by = "id") ``` ## left join Create sample data frames with multiple columns ```{r} df1 <- data.frame(id1 = c(1, 2, 3), id2 = c("A", "B", "C"), value1 = letters[1:3]) df2 <- data.frame(id1 = c(2, 3, 4), id2 = c("B", "C", "D"), value2 = LETTERS[1:3]) # Perform left join left_join(df1, df2, by = c("id1", "id2")) ``` ## right join ```{r} (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) # Perform right join right_join(df1, df2, by = "id") ``` ## inner join ```{r} # Create sample data frames (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) # Perform inner join inner_join(df1, df2, by = "id") ``` ## full join ```{r} # Create sample data frames (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) # Perform inner join full_join(df1, df2, by = "id") ``` ## semi join Create sample data frames ```{r} (df1 <- data.frame(id = 1:5, value1 = letters[1:5])) (df2 <- data.frame(id = c(2, 4, 6), value2 = LETTERS[1:3])) # Perform semi join semi_join(df1, df2, by = "id") ``` ## 练习 合并`airquality.xlsx`中的数据。 ## 练习 统计各城市白天与晚上的大气质量差异,计算不同指标差异最大的10个城市。 ## 欢迎讨论!{.center} `r rmdify::slideend(wechat = FALSE, type = "public", tel = FALSE, thislink = "https://drwater.rcees.ac.cn/course/public/RWEP/@PUB/SD/")`