Label x and y arguments in aes(), closes #1159
This commit is contained in:
parent
73d779d8e0
commit
ff893361e8
2
EDA.qmd
2
EDA.qmd
|
@ -471,7 +471,7 @@ You can do that by exchanging the x and y aesthetic mappings.
|
|||
#| on the y-axis and ordered by increasing median highway mileage.
|
||||
|
||||
ggplot(mpg,
|
||||
aes(y = fct_reorder(class, hwy, median), x = hwy)) +
|
||||
aes(x = hwy, y = fct_reorder(class, hwy, median))) +
|
||||
geom_boxplot()
|
||||
```
|
||||
|
||||
|
|
|
@ -256,7 +256,8 @@ It takes a factor, `f`, and then any number of levels that you want to move to t
|
|||
#| bottom of the y-axis. Generally there is a positive association
|
||||
#| between income and age, and the income band with the highest average
|
||||
#| age is "Not applicable".
|
||||
ggplot(rincome_summary, aes(age, fct_relevel(rincome, "Not applicable"))) +
|
||||
|
||||
ggplot(rincome_summary, aes(x = age, y = fct_relevel(rincome, "Not applicable"))) +
|
||||
geom_point()
|
||||
```
|
||||
|
||||
|
@ -291,7 +292,7 @@ by_age <- gss_cat |>
|
|||
prop = n / sum(n)
|
||||
)
|
||||
|
||||
ggplot(by_age, aes(age, prop, color = marital)) +
|
||||
ggplot(by_age, aes(x = age, y = prop, color = marital)) +
|
||||
geom_line(na.rm = TRUE)
|
||||
|
||||
ggplot(by_age, aes(x = age, y = prop, color = fct_reorder2(marital, age, prop))) +
|
||||
|
|
|
@ -666,11 +666,11 @@ For example, imagine that you're making a lot of histograms:
|
|||
```{r}
|
||||
#| fig-show: hide
|
||||
diamonds |>
|
||||
ggplot(aes(carat)) +
|
||||
ggplot(aes(x = carat)) +
|
||||
geom_histogram(binwidth = 0.1)
|
||||
|
||||
diamonds |>
|
||||
ggplot(aes(carat)) +
|
||||
ggplot(aes(x = carat)) +
|
||||
geom_histogram(binwidth = 0.05)
|
||||
```
|
||||
|
||||
|
@ -680,7 +680,7 @@ This is easy as pie once you know that `aes()` is a data-masking function and yo
|
|||
```{r}
|
||||
histogram <- function(df, var, binwidth = NULL) {
|
||||
df |>
|
||||
ggplot(aes({{ var }})) +
|
||||
ggplot(aes(x = {{ var }})) +
|
||||
geom_histogram(binwidth = binwidth)
|
||||
}
|
||||
|
||||
|
@ -705,7 +705,7 @@ For example, maybe you want an easy way to eyeball whether or not a data set is
|
|||
# https://twitter.com/tyler_js_smith/status/1574377116988104704
|
||||
linearity_check <- function(df, x, y) {
|
||||
df |>
|
||||
ggplot(aes({{ x }}, {{ y }})) +
|
||||
ggplot(aes(x = {{ x }}, y = {{ y }})) +
|
||||
geom_point() +
|
||||
geom_smooth(method = "loess", color = "red", se = FALSE) +
|
||||
geom_smooth(method = "lm", color = "blue", se = FALSE)
|
||||
|
@ -722,7 +722,7 @@ Or maybe you want an alternative to colored scatterplots for very large datasets
|
|||
# https://twitter.com/ppaxisa/status/1574398423175921665
|
||||
hex_plot <- function(df, x, y, z, bins = 20, fun = "mean") {
|
||||
df |>
|
||||
ggplot(aes({{ x }}, {{ y }}, z = {{ z }})) +
|
||||
ggplot(aes(x = {{ x }}, y = {{ y }}, z = {{ z }})) +
|
||||
stat_summary_hex(
|
||||
aes(color = after_scale(fill)), # make border same color as fill
|
||||
bins = bins,
|
||||
|
@ -760,7 +760,7 @@ Or maybe you want to make it easy to draw a bar plot just for a subset of the da
|
|||
conditional_bars <- function(df, condition, var) {
|
||||
df |>
|
||||
filter({{ condition }}) |>
|
||||
ggplot(aes({{ var }})) +
|
||||
ggplot(aes(x = {{ var }})) +
|
||||
geom_bar()
|
||||
}
|
||||
|
||||
|
@ -779,7 +779,7 @@ fancy_ts <- function(df, val, group) {
|
|||
summarize(breaks = max({{ val }}))
|
||||
|
||||
df |>
|
||||
ggplot(aes(date, {{ val }}, group = {{ group }}, color = {{ group }})) +
|
||||
ggplot(aes(x = date, y = {{ val }}, group = {{ group }}, color = {{ group }})) +
|
||||
geom_path() +
|
||||
scale_y_continuous(
|
||||
breaks = labs$breaks,
|
||||
|
@ -813,7 +813,7 @@ The only advantage of this syntax is that `vars()` uses tidy evaluation so you c
|
|||
```{r}
|
||||
# https://twitter.com/sharoz/status/1574376332821204999
|
||||
foo <- function(x) {
|
||||
ggplot(mtcars, aes(mpg, disp)) +
|
||||
ggplot(mtcars, aes(x = mpg, y = disp)) +
|
||||
geom_point() +
|
||||
facet_wrap(vars({{ x }}))
|
||||
}
|
||||
|
@ -828,7 +828,7 @@ For example, the following function makes it particularly easy to interactively
|
|||
# https://twitter.com/yutannihilat_en/status/1574387230025875457
|
||||
density <- function(color, facets, binwidth = 0.1) {
|
||||
diamonds |>
|
||||
ggplot(aes(carat, after_stat(density), color = {{ color }})) +
|
||||
ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +
|
||||
geom_freqpoly(binwidth = binwidth) +
|
||||
facet_wrap(vars({{ facets }}))
|
||||
}
|
||||
|
@ -845,7 +845,7 @@ Remember the histogram function we showed you earlier?
|
|||
```{r}
|
||||
histogram <- function(df, var, binwidth = NULL) {
|
||||
df |>
|
||||
ggplot(aes({{ var }})) +
|
||||
ggplot(aes(x = {{ var }})) +
|
||||
geom_histogram(binwidth = binwidth)
|
||||
}
|
||||
```
|
||||
|
@ -863,7 +863,7 @@ histogram <- function(df, var, binwidth) {
|
|||
label <- rlang::englue("A histogram of {{var}} with binwidth {binwidth}")
|
||||
|
||||
df |>
|
||||
ggplot(aes({{ var }})) +
|
||||
ggplot(aes(x = {{ var }})) +
|
||||
geom_histogram(binwidth = binwidth) +
|
||||
labs(title = label)
|
||||
}
|
||||
|
@ -917,7 +917,7 @@ This makes it easier to see the hierarchy in your code by skimming the left-hand
|
|||
# missing extra two spaces
|
||||
density <- function(color, facets, binwidth = 0.1) {
|
||||
diamonds |>
|
||||
ggplot(aes(carat, after_stat(density), color = {{ color }})) +
|
||||
ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +
|
||||
geom_freqpoly(binwidth = binwidth) +
|
||||
facet_wrap(vars({{ facets }}))
|
||||
}
|
||||
|
@ -925,7 +925,7 @@ diamonds |>
|
|||
# Pipe indented incorrectly
|
||||
density <- function(color, facets, binwidth = 0.1) {
|
||||
diamonds |>
|
||||
ggplot(aes(carat, after_stat(density), color = {{ color }})) +
|
||||
ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +
|
||||
geom_freqpoly(binwidth = binwidth) +
|
||||
facet_wrap(vars({{ facets }}))
|
||||
}
|
||||
|
|
|
@ -949,10 +949,10 @@ There are two other coordinate systems that are occasionally helpful.
|
|||
|
||||
nz <- map_data("nz")
|
||||
|
||||
ggplot(nz, aes(long, lat, group = group)) +
|
||||
ggplot(nz, aes(x = long, y = lat, group = group)) +
|
||||
geom_polygon(fill = "white", color = "black")
|
||||
|
||||
ggplot(nz, aes(long, lat, group = group)) +
|
||||
ggplot(nz, aes(x = long, y = lat, group = group)) +
|
||||
geom_polygon(fill = "white", color = "black") +
|
||||
coord_quickmap()
|
||||
```
|
||||
|
|
|
@ -365,7 +365,7 @@ flights |>
|
|||
prop_delayed = mean(arr_delay > 0, na.rm = TRUE),
|
||||
.groups = "drop"
|
||||
) |>
|
||||
ggplot(aes(prop_delayed)) +
|
||||
ggplot(aes(x = prop_delayed)) +
|
||||
geom_histogram(binwidth = 0.05)
|
||||
```
|
||||
|
||||
|
|
10
numbers.qmd
10
numbers.qmd
|
@ -436,7 +436,7 @@ slide_vec(x, sum, .before = 2, .after = 2, .complete = TRUE)
|
|||
```{r}
|
||||
flights |>
|
||||
filter(month == 1, day == 1) |>
|
||||
ggplot(aes(sched_dep_time, dep_delay)) +
|
||||
ggplot(aes(x = sched_dep_time, y = dep_delay)) +
|
||||
geom_point()
|
||||
```
|
||||
|
||||
|
@ -649,7 +649,7 @@ flights |>
|
|||
n = n(),
|
||||
.groups = "drop"
|
||||
) |>
|
||||
ggplot(aes(mean, median)) +
|
||||
ggplot(aes(x = mean, y = median)) +
|
||||
geom_abline(slope = 1, intercept = 0, color = "white", size = 2) +
|
||||
geom_point()
|
||||
```
|
||||
|
@ -731,12 +731,12 @@ This suggests that the mean is unlikely to be a good summary and we might prefer
|
|||
#| fig-height: 2
|
||||
|
||||
flights |>
|
||||
ggplot(aes(dep_delay)) +
|
||||
ggplot(aes(x = dep_delay)) +
|
||||
geom_histogram(binwidth = 15)
|
||||
|
||||
flights |>
|
||||
filter(dep_delay < 120) |>
|
||||
ggplot(aes(dep_delay)) +
|
||||
ggplot(aes(x = dep_delay)) +
|
||||
geom_histogram(binwidth = 5)
|
||||
```
|
||||
|
||||
|
@ -756,7 +756,7 @@ The distributions seem to follow a common pattern, suggesting it's fine to use t
|
|||
#| overlapping forming a thick black bland.
|
||||
flights |>
|
||||
filter(dep_delay < 120) |>
|
||||
ggplot(aes(dep_delay, group = interaction(day, month))) +
|
||||
ggplot(aes(x = dep_delay, group = interaction(day, month))) +
|
||||
geom_freqpoly(binwidth = 5, alpha = 1/5)
|
||||
```
|
||||
|
||||
|
|
|
@ -23,6 +23,6 @@ The distribution of the remainder is shown below:
|
|||
#| echo: false
|
||||
|
||||
smaller |>
|
||||
ggplot(aes(carat)) +
|
||||
ggplot(aes(x = carat)) +
|
||||
geom_freqpoly(binwidth = 0.01)
|
||||
```
|
||||
|
|
|
@ -166,7 +166,7 @@ It looks like they've radically increased in popularity lately!
|
|||
babynames |>
|
||||
group_by(year) |>
|
||||
summarize(prop_x = mean(str_detect(name, "x"))) |>
|
||||
ggplot(aes(year, prop_x)) +
|
||||
ggplot(aes(x = year, y = prop_x)) +
|
||||
geom_line()
|
||||
```
|
||||
|
||||
|
|
|
@ -140,7 +140,7 @@ We wish this transition wasn't necessary but unfortunately ggplot2 was created b
|
|||
|
||||
diamonds |>
|
||||
count(cut, clarity) |>
|
||||
ggplot(aes(clarity, cut, fill = n)) +
|
||||
ggplot(aes(x = clarity, y = cut, fill = n)) +
|
||||
geom_tile()
|
||||
```
|
||||
|
||||
|
|
|
@ -298,7 +298,7 @@ Don't worry about the details, you'll learn them later in the book.
|
|||
|
||||
library(tidyverse)
|
||||
|
||||
ggplot(diamonds, aes(carat, price)) +
|
||||
ggplot(diamonds, aes(x = carat, y = price)) +
|
||||
geom_hex()
|
||||
ggsave("diamonds.pdf")
|
||||
|
||||
|
|
|
@ -212,7 +212,7 @@ flights |>
|
|||
summarize(
|
||||
delay = mean(arr_delay, na.rm = TRUE)
|
||||
) |>
|
||||
ggplot(aes(month, delay)) +
|
||||
ggplot(aes(x = month, y = delay)) +
|
||||
geom_point() +
|
||||
geom_line()
|
||||
```
|
||||
|
@ -228,7 +228,7 @@ flights |>
|
|||
distance = mean(distance),
|
||||
speed = mean(air_time / distance, na.rm = TRUE)
|
||||
) |>
|
||||
ggplot(aes(distance, speed)) +
|
||||
ggplot(aes(x = distance, y = speed)) +
|
||||
geom_smooth(
|
||||
method = "loess",
|
||||
span = 0.5,
|
||||
|
|
Loading…
Reference in New Issue