No longer need out.width for diagrams
This commit is contained in:
parent
d43119af26
commit
e36a6ccbd1
|
@ -39,4 +39,5 @@ Remotes:
|
|||
hadley/stringr,
|
||||
hadley/ggplot2,
|
||||
hadley/nycflights13,
|
||||
yihui/knitr,
|
||||
rstudio/bookdown
|
||||
|
|
|
@ -101,7 +101,7 @@ x %>% transpose() %>% str()
|
|||
|
||||
Graphically, this looks like:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/lists-transpose.png")
|
||||
```
|
||||
|
||||
|
|
|
@ -727,7 +727,7 @@ map2(mu, sigma, rnorm, n = 5) %>% str()
|
|||
|
||||
`map2()` generates this series of function calls:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/lists-map2.png")
|
||||
```
|
||||
|
||||
|
@ -755,7 +755,7 @@ args1 %>% pmap(rnorm) %>% str()
|
|||
|
||||
That looks like:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/lists-pmap-unnamed.png")
|
||||
```
|
||||
|
||||
|
@ -768,7 +768,7 @@ args2 %>% pmap(rnorm) %>% str()
|
|||
|
||||
That generates longer, but safer, calls:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/lists-pmap-named.png")
|
||||
```
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ You can use the nycflights13 package to learn about relational data. nycflights1
|
|||
|
||||
One way to show the relationships between the different tables is with a drawing:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/relational-nycflights.png")
|
||||
```
|
||||
|
||||
|
@ -176,7 +176,7 @@ The following sections explain, in detail, how mutating joins work. You'll start
|
|||
|
||||
To help you learn how joins work, I'm going to represent data frames visually:
|
||||
|
||||
```{r, echo = FALSE, out.width = "25%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-setup.png")
|
||||
```
|
||||
```{r}
|
||||
|
@ -188,7 +188,7 @@ The coloured column represents the "key" variable: these are used to match the r
|
|||
|
||||
A join is a way of connecting each row in `x` to zero, one, or more rows in `y`. The following diagram shows each potential match as an intersection of a pair of lines.
|
||||
|
||||
```{r, echo = FALSE, out.width = "35%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-setup2.png")
|
||||
```
|
||||
|
||||
|
@ -196,7 +196,7 @@ knitr::include_graphics("diagrams/join-setup2.png")
|
|||
|
||||
In an actual join, matches will be indicated with dots. The colour of the dots match the colour of the keys to remind that that's what important. Then the number of dots = the number of matches = the number of rows in the output.
|
||||
|
||||
```{r, echo = FALSE, out.width = "70%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-inner.png")
|
||||
```
|
||||
|
||||
|
@ -204,7 +204,7 @@ knitr::include_graphics("diagrams/join-inner.png")
|
|||
|
||||
The simplest type of join is the __inner join__. An inner join matches pairs of observations whenever their keys are equal:
|
||||
|
||||
```{r, echo = FALSE, out.width = "70%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-inner.png")
|
||||
```
|
||||
|
||||
|
@ -230,7 +230,7 @@ These joins work by adding an additional "virtual" observation to each table. Th
|
|||
|
||||
Graphically, that looks like:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-outer.png")
|
||||
```
|
||||
|
||||
|
@ -252,7 +252,7 @@ So far all the diagrams have assumed that the keys are unique. But that's not al
|
|||
add in additional information as there is typically a one-to-many
|
||||
relationship.
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-one-to-many.png")
|
||||
```
|
||||
|
||||
|
@ -270,7 +270,7 @@ So far all the diagrams have assumed that the keys are unique. But that's not al
|
|||
neither table do the keys uniquely identify an observation. When you join
|
||||
duplicated keys, you get all possible combinations, the Cartesian product:
|
||||
|
||||
```{r, echo = FALSE, out.width = "75%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-many-to-many.png")
|
||||
```
|
||||
|
||||
|
@ -416,19 +416,19 @@ flights %>% semi_join(top_dest)
|
|||
|
||||
Graphically, a semi-join looks like this:
|
||||
|
||||
```{r, echo = FALSE, out.width = "50%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-semi.png")
|
||||
```
|
||||
|
||||
Only the existence of a match is important; it doesn't matter which observation is matched. This means that filtering joins never duplicate rows like mutating joins do:
|
||||
|
||||
```{r, echo = FALSE, out.width = "50%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-semi-many.png")
|
||||
```
|
||||
|
||||
The inverse of a semi-join is an anti-join. An anti-join keeps the rows that _don't_ have a match:
|
||||
|
||||
```{r, echo = FALSE, out.width = "50%"}
|
||||
```{r, echo = FALSE}
|
||||
knitr::include_graphics("diagrams/join-anti.png")
|
||||
```
|
||||
|
||||
|
|
|
@ -214,7 +214,7 @@ filter(flights, month %in% c(11, 12))
|
|||
|
||||
The following figure shows the complete set of boolean operations:
|
||||
|
||||
```{r bool-ops, echo = FALSE, fig.cap = "Complete set of boolean operations", out.width = "75%"}
|
||||
```{r bool-ops, echo = FALSE, fig.cap = "Complete set of boolean operations"}
|
||||
knitr::include_graphics("diagrams/transform-logical.png")
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in New Issue