Actually strip status
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
<section data-type="chapter" id="chp-base-R">
|
||||
<h1><span id="sec-base-r" class="quarto-section-identifier d-none d-lg-block"><span class="chapter-title">A field guide to base R</span></span></h1><p>::: status callout-note You are reading the work-in-progress second edition of R for Data Science. This chapter should be readable but is currently undergoing final polishing. You can find the complete first edition at <a href="https://r4ds.had.co.nz" class="uri">https://r4ds.had.co.nz</a>. :::</p><p>To finish off the programming section, we’re going to give you a quick tour of the most important base R functions that we don’t otherwise discuss in the book. These tools are particularly useful as you do more programming and will help you read code that you’ll encounter in the wild.</p><p>This is a good place to remind you that the tidyverse is not the only way to solve data science problems. We teach the tidyverse in this book because tidyverse packages share a common design philosophy, which increases the consistency across functions, making each new function or package a little easier to learn and use. It’s not possible to use the tidyverse without using base R, so we’ve actually already taught you a <strong>lot</strong> of base R functions: from <code><a href="https://rdrr.io/r/base/library.html">library()</a></code> to load packages, to <code><a href="https://rdrr.io/r/base/sum.html">sum()</a></code> and <code><a href="https://rdrr.io/r/base/mean.html">mean()</a></code> for numeric summaries, to the factor, date, and POSIXct data types, and of course all the basic operators like <code>+</code>, <code>-</code>, <code>/</code>, <code>*</code>, <code>|</code>, <code>&</code>, and <code>!</code>. What we haven’t focused on so far is base R workflows, so we will highlight a few of those in this chapter.</p><p>After you read this book you’ll learn other approaches to the same problems using base R, data.table, and other packages. You’ll certainly encounter these other approaches when you start reading R code written by other people, particularly if you’re using StackOverflow. It’s 100% okay to write code that uses a mix of approaches, and don’t let anyone tell you otherwise!</p><p>In this chapter, we’ll focus on four big topics: subsetting with <code>[</code>, subsetting with <code>[[</code> and <code>$</code>, the apply family of functions, and for loops. To finish off, we’ll briefly discuss two important plotting functions.</p>
|
||||
<h1><span id="sec-base-r" class="quarto-section-identifier d-none d-lg-block"><span class="chapter-title">A field guide to base R</span></span></h1><p>To finish off the programming section, we’re going to give you a quick tour of the most important base R functions that we don’t otherwise discuss in the book. These tools are particularly useful as you do more programming and will help you read code that you’ll encounter in the wild.</p><p>This is a good place to remind you that the tidyverse is not the only way to solve data science problems. We teach the tidyverse in this book because tidyverse packages share a common design philosophy, which increases the consistency across functions, making each new function or package a little easier to learn and use. It’s not possible to use the tidyverse without using base R, so we’ve actually already taught you a <strong>lot</strong> of base R functions: from <code><a href="https://rdrr.io/r/base/library.html">library()</a></code> to load packages, to <code><a href="https://rdrr.io/r/base/sum.html">sum()</a></code> and <code><a href="https://rdrr.io/r/base/mean.html">mean()</a></code> for numeric summaries, to the factor, date, and POSIXct data types, and of course all the basic operators like <code>+</code>, <code>-</code>, <code>/</code>, <code>*</code>, <code>|</code>, <code>&</code>, and <code>!</code>. What we haven’t focused on so far is base R workflows, so we will highlight a few of those in this chapter.</p><p>After you read this book you’ll learn other approaches to the same problems using base R, data.table, and other packages. You’ll certainly encounter these other approaches when you start reading R code written by other people, particularly if you’re using StackOverflow. It’s 100% okay to write code that uses a mix of approaches, and don’t let anyone tell you otherwise!</p><p>In this chapter, we’ll focus on four big topics: subsetting with <code>[</code>, subsetting with <code>[[</code> and <code>$</code>, the apply family of functions, and for loops. To finish off, we’ll briefly discuss two important plotting functions.</p>
|
||||
<section id="prerequisites" data-type="sect2">
|
||||
<h2>
|
||||
Prerequisites</h2>
|
||||
|
||||
Reference in New Issue
Block a user