Move database transform stuff into own file

This commit is contained in:
hadley 2015-12-29 08:22:42 -06:00
parent a27f519da1
commit 0a8220d882
2 changed files with 24 additions and 69 deletions

24
databases.Rmd Normal file
View File

@ -0,0 +1,24 @@
---
layout: default
title: Databases
---
### Two-table verbs
Each two-table verb has a straightforward SQL equivalent:
| R | SQL
|------------------|--------
| `inner_join()` | `SELECT * FROM x JOIN y ON x.a = y.a`
| `left_join()` | `SELECT * FROM x LEFT JOIN y ON x.a = y.a`
| `right_join()` | `SELECT * FROM x RIGHT JOIN y ON x.a = y.a`
| `full_join()` | `SELECT * FROM x FULL JOIN y ON x.a = y.a`
| `semi_join()` | `SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `anti_join()` | `SELECT * FROM x WHERE NOT EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `intersect(x, y)`| `SELECT * FROM x INTERSECT SELECT * FROM y`
| `union(x, y)` | `SELECT * FROM x UNION SELECT * FROM y`
| `setdiff(x, y)` | `SELECT * FROM x EXCEPT SELECT * FROM y`
`x` and `y` don't have to be tables in the same database. If you specify `copy = TRUE`, dplyr will copy the `y` table into the same location as the `x` variable. This is useful if you've downloaded a summarised dataset and determined a subset of interest that you now want the full data for. You can use `semi_join(x, y, copy = TRUE)` to upload the indices of interest to a temporary table in the same database as `x`, and then perform a efficient semi join in the database.
If you're working with large data, it maybe also be helpful to set `auto_index = TRUE`. That will automatically add an index on the join variables to the temporary table.

View File

@ -957,72 +957,3 @@ union(df1, df2)
setdiff(df1, df2)
setdiff(df2, df1)
```
### Databases
Each two-table verb has a straightforward SQL equivalent:
| R | SQL
|------------------|--------
| `inner_join()` | `SELECT * FROM x JOIN y ON x.a = y.a`
| `left_join()` | `SELECT * FROM x LEFT JOIN y ON x.a = y.a`
| `right_join()` | `SELECT * FROM x RIGHT JOIN y ON x.a = y.a`
| `full_join()` | `SELECT * FROM x FULL JOIN y ON x.a = y.a`
| `semi_join()` | `SELECT * FROM x WHERE EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `anti_join()` | `SELECT * FROM x WHERE NOT EXISTS (SELECT 1 FROM y WHERE x.a = y.a)`
| `intersect(x, y)`| `SELECT * FROM x INTERSECT SELECT * FROM y`
| `union(x, y)` | `SELECT * FROM x UNION SELECT * FROM y`
| `setdiff(x, y)` | `SELECT * FROM x EXCEPT SELECT * FROM y`
`x` and `y` don't have to be tables in the same database. If you specify `copy = TRUE`, dplyr will copy the `y` table into the same location as the `x` variable. This is useful if you've downloaded a summarised dataset and determined a subset of interest that you now want the full data for. You can use `semi_join(x, y, copy = TRUE)` to upload the indices of interest to a temporary table in the same database as `x`, and then perform a efficient semi join in the database.
If you're working with large data, it maybe also be helpful to set `auto_index = TRUE`. That will automatically add an index on the join variables to the temporary table.
### Coercion rules
When joining tables, dplyr is a little more conservative than base R about the types of variable that it considers equivalent. This is mostly likely to surprise if you're working factors:
* Factors with different levels are coerced to character with a warning:
```{r}
df1 <- data_frame(x = 1, y = factor("a"))
df2 <- data_frame(x = 2, y = factor("b"))
full_join(df1, df2) %>% str()
```
* Factors with the same levels in a different order are coerced to character
with a warning:
```{r}
df1 <- data_frame(x = 1, y = factor("a", levels = c("a", "b")))
df2 <- data_frame(x = 2, y = factor("b", levels = c("b", "a")))
full_join(df1, df2) %>% str()
```
* Factors are preserved only if the levels match exactly:
```{r}
df1 <- data_frame(x = 1, y = factor("a", levels = c("a", "b")))
df2 <- data_frame(x = 2, y = factor("b", levels = c("a", "b")))
full_join(df1, df2) %>% str()
```
* A factor and a character are coerced to character with a warning:
```{r}
df1 <- data_frame(x = 1, y = "a")
df2 <- data_frame(x = 2, y = factor("a"))
full_join(df1, df2) %>% str()
```
Otherwise logicals will be silently upcast to integer, and integer to numeric, but coercing to character will raise an error:
```{r, error = TRUE}
df1 <- data_frame(x = 1, y = 1L)
df2 <- data_frame(x = 2, y = 1.5)
full_join(df1, df2) %>% str()
df1 <- data_frame(x = 1, y = 1L)
df2 <- data_frame(x = 2, y = "a")
full_join(df1, df2) %>% str()
```