Throughout this book we work with "tibbles" instead of the traditional data frame. Tibbles _are_ data frames, but tweak some older behaviours to make life a littler easier. R is an old language, and some things that were true 10 or 20 years ago no longer apply. It's difficult to change base R without breaking existing code, so most innovation occurs in packages. Here we will describe the tibble package, which provides opinionated data frames that make working in the tidyverse a little easier. You can learn more about tibbles in the accompanying vignette: `vignette("tibble")`.
The majority of the functions that you'll use in this book already produce tibbles. If you're working with functions from other packages, you might need to coerce a regular data frame a tibble. You can do that with `as_tibble()`:
Note that `tibble()` automatically recycles inputs of length 1, and you can refer to variables that you just created. Compared to `data.frame()`, `tibble()` does much less: it never changes the type of the inputs (e.g. it never converts strings to factors!), it never changes the names of variables, and it never creates `row.names()`.
Another way to create a tibble is with `frame_data()`, which is customised for data entry in R code. Column headings are defined by formulas (`~`), and entries are separated by commas:
Tibbles have a refined print method that shows only the first 10 rows, and all the columns that fit on screen. This makes it much easier to work with large data. In addition to its name, each column reports its type, a nice feature borrowed from `str()`:
Tibbles are stricter about subsetting. If you try to access a variable that does not exist, you'll get a warning. Unlike data frames, tibbles do not use partial matching on column names:
Some older functions don't work with tibbles because they expect `df[, 1]` to return a vector, not a data frame. If you encounter one of these functions, use `as.data.frame()` to turn a tibble back to a data frame: