In this chapter, you'll turn the tools of multiple models towards model assessment: learning how the model performs when giving new data. So far we've focussed on models as tools for description, using models to help us understand the patterns in the data we have collected so far. But ideally a model will do more than just describe what we have seen so far - it will also help predict what will come next.
The most common problem with a model that causes it to do poorly with new data is overfitting.
Obviously, there's a bit of a problem here: we don't have new data with which to check the model, and even if we did, we'd presumably use it to make the model better in the first place. One powerful technique of approaches can help us get around this problem: resampling.
There are two main resampling techniques that we're going to cover.
* We will use __cross-validation__ to assess model quality. In
cross-validation, you split the data into test and training sets. You fit
the data to the training set, and evaluate it on the test set. This avoids
intrinsic bias of using the same data to both fit the model and assess it's
quality. However it introduces a new bias: you're not using all the data to
fit the model so it's going to be quite as good as it could be.
* We will use __boostrapping__ to understand how stable (or how variable)
the model is. If you sample data from the same population multiple times,
how much does your model vary? Instead of going back to collect new data,
you can use the best estimate of the population data: the data you've
collected so far. The amazing idea of the bootstrap is that you can resample
from the data you already have.
There are lots of high-level helpers to do these resampling methods in R. We're going to use the tools provided by the modelr package because they are explicit - you'll see exactly what's going on at each step.
<http://topepo.github.io/caret>. [Applied Predictive Modeling](https://amzn.com/1461468485), by Max Kuhn and Kjell Johnson.
If you're competing in competitions, like Kaggle, that are predominantly about creating good predicitons, developing a good strategy for avoiding overfitting is very important. Otherwise you risk tricking yourself into thinking that you have a good model, when in reality you just have a model that does a good job of fitting your data.
There is a closely related family that uses a similar idea: model ensembles. However, instead of trying to find the best models, ensembles make use of all the models, acknowledging that even models that don't fit all the data particularly well can still model some subsets well. In general, you can think of model ensemble techniques as functions that take a list of models, and a return a single model that attempts to take the best part of each.
Both bootstrapping and cross-validation help us to spot and remedy the problem of __over fitting__, where the model fits the data we've seen so far extremely well, but does a bad job of generalising to new data.
A classic example of over-fitting is to use a spline with too many degrees of freedom.
Bias - variance tradeoff. Simpler = more biased. Complex = more variable. Occam's razor.
Obviously it does much worse. But in real-life you can't easily go out and recollect your data. There are two approach to help you get around this problem. I'll introduce them briefly here, and then we'll go into more depth in the following sections.
(You might notice that while each individual model varies a lot, the average of all the models seems like it's pretty good. That gives rise to a model ensemble technique called model averaging.)