255 lines
5.3 KiB
Plaintext
255 lines
5.3 KiB
Plaintext
---
|
|
title: "Lesson 9"
|
|
format: html
|
|
---
|
|
|
|
|
|
```{r}
|
|
# install.packages("tidymodels")
|
|
|
|
require(tidymodels)
|
|
taxi
|
|
|
|
taxisplit <- initial_split(taxi, prop = 0.8)
|
|
taxi_train <- training(taxisplit)
|
|
taxi_test <- testing(taxisplit)
|
|
|
|
tree_spec <-
|
|
decision_tree(cost_complexity = 0.002) %>%
|
|
set_mode("classification")
|
|
|
|
taxi_fit <- workflow() %>%
|
|
add_formula(tip ~ .) %>%
|
|
add_model(tree_spec) %>%
|
|
fit(data = taxi_train)
|
|
```
|
|
|
|
|
|
```{r}
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
relocate(tip, .pred_class, .pred_yes, .pred_no)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
conf_mat(truth = tip, estimate = .pred_class)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
accuracy(truth = tip, estimate = .pred_class)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
sensitivity(truth = tip, estimate = .pred_class)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
specificity(truth = tip, estimate = .pred_class)
|
|
|
|
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
taxi_metrics(truth = tip, estimate = .pred_class)
|
|
|
|
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
group_by(local) %>%
|
|
taxi_metrics(truth = tip, estimate = .pred_class)
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
roc_curve(truth = tip, .pred_yes) %>%
|
|
autoplot()
|
|
|
|
|
|
augment(taxi_fit, new_data = taxi_train)
|
|
|
|
|
|
augment(taxi_fit, new_data = taxi_train) %>%
|
|
roc_curve(truth = tip, .pred_yes) |>
|
|
ggplot(aes(1 - sensitivity, specificity)) +
|
|
geom_point() +
|
|
geom_line() +
|
|
geom_abline(slope = 1)
|
|
```
|
|
|
|
|
|
# Cross Validation
|
|
|
|
```{r}
|
|
vfold_cv(taxi_train, v = 10) |>
|
|
pull(splits) |>
|
|
nth(1)
|
|
taxi_folds <- vfold_cv(taxi_train)
|
|
taxi_folds$splits[1:3]
|
|
|
|
vfold_cv(taxi_train, strata = tip)
|
|
|
|
set.seed(123)
|
|
taxi_folds <- vfold_cv(taxi_train, v = 10, strata = tip)
|
|
taxi_folds
|
|
|
|
taxi_wflow <- workflow() %>%
|
|
add_formula(tip ~ .) %>%
|
|
add_model(tree_spec)
|
|
|
|
|
|
taxi_res <- fit_resamples(taxi_wflow, taxi_folds)
|
|
taxi_res
|
|
|
|
|
|
taxi_res$.metrics[[1]]
|
|
|
|
|
|
taxi_res$splits[[1]]
|
|
|
|
analysis(taxi_res$splits[[1]])
|
|
|
|
analysis(taxi_res$splits[[1]])
|
|
assessment(taxi_res$splits[[1]])
|
|
|
|
|
|
taxi_res %>%
|
|
collect_metrics()
|
|
|
|
taxi_res %>%
|
|
collect_metrics() %>%
|
|
select(.metric, mean, n)
|
|
|
|
# Save the assessment set results
|
|
ctrl_taxi <- control_resamples(save_pred = TRUE)
|
|
taxi_res <- fit_resamples(taxi_wflow, taxi_folds, control = ctrl_taxi)
|
|
|
|
taxi_res
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# NLA2007 cyanophyta model
|
|
|
|
|
|
```{r}
|
|
require(tidyverse)
|
|
sitedf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2014-01/nla2007_sampledlakeinformation_20091113.csv"
|
|
) |>
|
|
select(
|
|
SITE_ID,
|
|
lon = LON_DD,
|
|
lat = LAT_DD,
|
|
name = LAKENAME,
|
|
area = LAKEAREA,
|
|
zmax = DEPTHMAX
|
|
) |>
|
|
group_by(SITE_ID) |>
|
|
summarize(
|
|
lon = mean(lon, na.rm = TRUE),
|
|
lat = mean(lat, na.rm = TRUE),
|
|
name = unique(name),
|
|
area = mean(area, na.rm = TRUE),
|
|
zmax = mean(zmax, na.rm = TRUE)
|
|
)
|
|
|
|
|
|
visitdf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv"
|
|
) |>
|
|
select(SITE_ID, date = DATE_PROFILE, year = YEAR, visit = VISIT_NO) |>
|
|
distinct()
|
|
|
|
|
|
waterchemdf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv"
|
|
) |>
|
|
select(
|
|
SITE_ID,
|
|
date = DATE_PROFILE,
|
|
depth = DEPTH,
|
|
temp = TEMP_FIELD,
|
|
do = DO_FIELD,
|
|
ph = PH_FIELD,
|
|
cond = COND_FIELD,
|
|
)
|
|
|
|
sddf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2014-10/nla2007_secchi_20091008.csv"
|
|
) |>
|
|
select(
|
|
SITE_ID,
|
|
date = DATE_SECCHI,
|
|
sd = SECMEAN,
|
|
clear_to_bottom = CLEAR_TO_BOTTOM
|
|
)
|
|
|
|
trophicdf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2014-10/nla2007_trophic_conditionestimate_20091123.csv"
|
|
) |>
|
|
select(SITE_ID, visit = VISIT_NO, tp = PTL, tn = NTL, chla = CHLA) |>
|
|
left_join(visitdf, by = c("SITE_ID", "visit")) |>
|
|
select(-year, -visit) |>
|
|
group_by(SITE_ID, date) |>
|
|
summarize(
|
|
tp = mean(tp, na.rm = TRUE),
|
|
tn = mean(tn, na.rm = TRUE),
|
|
chla = mean(chla, na.rm = TRUE)
|
|
)
|
|
|
|
|
|
phytodf <- readr::read_csv(
|
|
"https://www.epa.gov/sites/default/files/2014-10/nla2007_phytoplankton_softalgaecount_20091023.csv"
|
|
) |>
|
|
select(
|
|
SITE_ID,
|
|
date = DATEPHYT,
|
|
depth = SAMPLE_DEPTH,
|
|
phyta = DIVISION,
|
|
genus = GENUS,
|
|
species = SPECIES,
|
|
tax = TAXANAME,
|
|
abund = ABUND
|
|
) |>
|
|
mutate(phyta = gsub(" .*$", "", phyta)) |>
|
|
filter(!is.na(genus)) |>
|
|
group_by(SITE_ID, date, depth, phyta, genus) |>
|
|
summarize(abund = sum(abund, na.rm = TRUE)) |>
|
|
nest(phytodf = -c(SITE_ID, date))
|
|
|
|
phytodf$phytodf[[1]]
|
|
|
|
|
|
envdf <- waterchemdf |>
|
|
filter(depth < 2) |>
|
|
select(-depth) |>
|
|
group_by(SITE_ID, date) |>
|
|
summarise_all(~ mean(., na.rm = TRUE)) |>
|
|
ungroup() |>
|
|
left_join(sddf, by = c("SITE_ID", "date")) |>
|
|
left_join(trophicdf, by = c("SITE_ID", "date"))
|
|
|
|
nla <- envdf |>
|
|
left_join(phytodf, by = c("SITE_ID", "date")) |>
|
|
left_join(sitedf, by = "SITE_ID") |>
|
|
filter(!purrr::map_lgl(phytodf, is.null)) |>
|
|
mutate(
|
|
cyanophyta = purrr::map(
|
|
phytodf,
|
|
\(x) {
|
|
x |>
|
|
dplyr::filter(phyta == "Cyanophyta") |>
|
|
summarize(cyanophyta = sum(abund, na.rm = TRUE))
|
|
}
|
|
)
|
|
) |>
|
|
unnest(cyanophyta) |>
|
|
select(-phyta) |>
|
|
mutate(clear_to_bottom = ifelse(is.na(clear_to_bottom), TRUE, FALSE))
|
|
|
|
# library(rmdify)
|
|
# library(dwfun)
|
|
# dwfun::init()
|
|
```
|
|
|
|
|
|
|
|
|
|
|