1426 lines
28 KiB
Plaintext
1426 lines
28 KiB
Plaintext
---
|
||
title: "模型构建"
|
||
subtitle: 《区域水环境污染数据分析实践》<br>Data analysis practice of regional water environment pollution
|
||
author: 苏命、王为东<br>中国科学院大学资源与环境学院<br>中国科学院生态环境研究中心
|
||
date: today
|
||
lang: zh
|
||
format:
|
||
revealjs:
|
||
theme: dark
|
||
slide-number: true
|
||
chalkboard:
|
||
buttons: true
|
||
preview-links: auto
|
||
lang: zh
|
||
toc: true
|
||
toc-depth: 1
|
||
toc-title: 大纲
|
||
logo: ./_extensions/inst/img/ucaslogo.png
|
||
css: ./_extensions/inst/css/revealjs.css
|
||
pointer:
|
||
key: "p"
|
||
color: "#32cd32"
|
||
pointerSize: 18
|
||
revealjs-plugins:
|
||
- pointer
|
||
filters:
|
||
- d2
|
||
knitr:
|
||
opts_chunk:
|
||
dev: "svg"
|
||
retina: 3
|
||
execute:
|
||
freeze: auto
|
||
cache: true
|
||
echo: true
|
||
fig-width: 5
|
||
fig-height: 6
|
||
---
|
||
|
||
# tidymodels主要步骤
|
||
|
||
```{r}
|
||
#| echo: false
|
||
hexes <- function(..., size = 64) {
|
||
x <- c(...)
|
||
x <- sort(unique(x), decreasing = TRUE)
|
||
right <- (seq_along(x) - 1) * size
|
||
res <- glue::glue(
|
||
'![](hexes/<x>.png){.absolute top=-20 right=<right> width="<size>" height="<size * 1.16>"}',
|
||
.open = "<", .close = ">"
|
||
)
|
||
paste0(res, collapse = " ")
|
||
}
|
||
|
||
knitr::opts_chunk$set(
|
||
digits = 3,
|
||
comment = "#>",
|
||
dev = 'svglite'
|
||
)
|
||
|
||
# devtools::install_github("gadenbuie/countdown")
|
||
# library(countdown)
|
||
library(ggplot2)
|
||
theme_set(theme_bw())
|
||
options(cli.width = 70, ggplot2.discrete.fill = c("#7e96d5", "#de6c4e"))
|
||
|
||
train_color <- "#1a162d"
|
||
test_color <- "#cd4173"
|
||
data_color <- "#767381"
|
||
assess_color <- "#84cae1"
|
||
splits_pal <- c(data_color, train_color, test_color)
|
||
|
||
```
|
||
|
||
|
||
|
||
|
||
|
||
## 何为tidymodels? {background-image="images/tm-org.png" background-size="80%"}
|
||
|
||
```{r load-tm}
|
||
#| message: true
|
||
#| echo: true
|
||
#| warning: true
|
||
library(tidymodels)
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r diagram-split, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-split.jpg")
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r diagram-model-1, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-model-1.jpg")
|
||
```
|
||
|
||
:::notes
|
||
Stress that we are **not** fitting a model on the entire training set other than for illustrative purposes in deck 2.
|
||
:::
|
||
|
||
## 整体思路
|
||
|
||
```{r diagram-model-n, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-model-n.jpg")
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-resamples.jpg")
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-select.jpg")
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r diagram-final-fit, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-final-fit.jpg")
|
||
```
|
||
|
||
## 整体思路
|
||
|
||
```{r diagram-final-performance, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-final-performance.jpg")
|
||
```
|
||
|
||
## 相关包的安装
|
||
|
||
```{r load-pkgs}
|
||
#| eval: false
|
||
|
||
# Install the packages for the workshop
|
||
pkgs <-
|
||
c("bonsai", "doParallel", "embed", "finetune", "lightgbm", "lme4",
|
||
"plumber", "probably", "ranger", "rpart", "rpart.plot", "rules",
|
||
"splines2", "stacks", "text2vec", "textrecipes", "tidymodels",
|
||
"vetiver", "remotes")
|
||
|
||
install.packages(pkgs)
|
||
```
|
||
|
||
. . .
|
||
|
||
<br></br>
|
||
|
||
|
||
|
||
|
||
## Data on Chicago taxi trips
|
||
|
||
```{r taxi-print}
|
||
library(tidymodels)
|
||
taxi
|
||
```
|
||
|
||
## 数据分割与使用
|
||
|
||
对于机器学习,我们通常将数据分成训练集和测试集:
|
||
|
||
. . .
|
||
|
||
- 训练集用于估计模型参数。
|
||
- 测试集用于独立评估模型性能。
|
||
|
||
. . .
|
||
|
||
在训练过程中不要使用测试集。
|
||
|
||
|
||
. . .
|
||
|
||
```{r test-train-split}
|
||
#| echo: false
|
||
#| fig.width: 12
|
||
#| fig.height: 3
|
||
#|
|
||
set.seed(123)
|
||
library(forcats)
|
||
one_split <- slice(taxi, 1:30) %>%
|
||
initial_split() %>%
|
||
tidy() %>%
|
||
add_row(Row = 1:30, Data = "Original") %>%
|
||
mutate(Data = case_when(
|
||
Data == "Analysis" ~ "Training",
|
||
Data == "Assessment" ~ "Testing",
|
||
TRUE ~ Data
|
||
)) %>%
|
||
mutate(Data = factor(Data, levels = c("Original", "Training", "Testing")))
|
||
all_split <-
|
||
ggplot(one_split, aes(x = Row, y = fct_rev(Data), fill = Data)) +
|
||
geom_tile(color = "white",
|
||
linewidth = 1) +
|
||
scale_fill_manual(values = splits_pal, guide = "none") +
|
||
theme_minimal() +
|
||
theme(axis.text.y = element_text(size = rel(2)),
|
||
axis.text.x = element_blank(),
|
||
legend.position = "top",
|
||
panel.grid = element_blank()) +
|
||
coord_equal(ratio = 1) +
|
||
labs(x = NULL, y = NULL)
|
||
all_split
|
||
```
|
||
|
||
## The initial split
|
||
|
||
```{r taxi-split}
|
||
set.seed(123)
|
||
taxi_split <- initial_split(taxi)
|
||
taxi_split
|
||
```
|
||
|
||
## Accessing the data
|
||
|
||
```{r taxi-train-test}
|
||
taxi_train <- training(taxi_split)
|
||
taxi_test <- testing(taxi_split)
|
||
```
|
||
|
||
## The training set
|
||
|
||
```{r taxi-train}
|
||
taxi_train
|
||
```
|
||
|
||
## 练习
|
||
|
||
```{r taxi-split-prop}
|
||
set.seed(123)
|
||
taxi_split <- initial_split(taxi, prop = 0.8)
|
||
taxi_train <- training(taxi_split)
|
||
taxi_test <- testing(taxi_split)
|
||
|
||
nrow(taxi_train)
|
||
nrow(taxi_test)
|
||
```
|
||
|
||
## Stratification
|
||
|
||
Use `strata = tip`
|
||
|
||
```{r taxi-split-prop-strata}
|
||
set.seed(123)
|
||
taxi_split <- initial_split(taxi, prop = 0.8, strata = tip)
|
||
taxi_split
|
||
```
|
||
|
||
## Stratification
|
||
|
||
Stratification often helps, with very little downside
|
||
|
||
```{r taxi-tip-pct-by-split, echo = FALSE}
|
||
bind_rows(
|
||
taxi_train %>% mutate(split = "train"),
|
||
taxi_test %>% mutate(split = "test")
|
||
) %>%
|
||
ggplot(aes(x = split, fill = tip)) +
|
||
geom_bar(position = "fill")
|
||
```
|
||
|
||
## 模型类型
|
||
|
||
|
||
模型多种多样
|
||
|
||
- `lm` for linear model
|
||
|
||
- `glm` for generalized linear model (e.g. logistic regression)
|
||
|
||
- `glmnet` for regularized regression
|
||
|
||
- `keras` for regression using TensorFlow
|
||
|
||
- `stan` for Bayesian regression
|
||
|
||
- `spark` for large data sets
|
||
|
||
|
||
## 指定模型
|
||
|
||
```{r}
|
||
#| echo: false
|
||
library(tidymodels)
|
||
|
||
set.seed(123)
|
||
|
||
taxi_split <- initial_split(taxi, prop = 0.8, strata = tip)
|
||
taxi_train <- training(taxi_split)
|
||
taxi_test <- testing(taxi_split)
|
||
```
|
||
|
||
```{r logistic-reg}
|
||
logistic_reg()
|
||
```
|
||
|
||
|
||
:::notes
|
||
Models have default engines
|
||
:::
|
||
|
||
|
||
|
||
## To specify a model
|
||
|
||
```{r logistic-reg-glmnet}
|
||
logistic_reg() %>%
|
||
set_engine("glmnet")
|
||
```
|
||
|
||
. . .
|
||
|
||
|
||
```{r logistic-reg-stan}
|
||
logistic_reg() %>%
|
||
set_engine("stan")
|
||
```
|
||
|
||
|
||
::: columns
|
||
::: {.column width="40%"}
|
||
- Choose a model
|
||
- Specify an engine
|
||
- Set the [mode]{.underline}
|
||
:::
|
||
|
||
::: {.column width="60%"}
|
||
![](images/taxi_spinning.svg)
|
||
:::
|
||
:::
|
||
|
||
|
||
## To specify a model
|
||
|
||
```{r decision-tree}
|
||
decision_tree()
|
||
```
|
||
|
||
:::notes
|
||
Some models have a default mode
|
||
:::
|
||
|
||
## To specify a model
|
||
|
||
```{r decision-tree-classification}
|
||
decision_tree() %>%
|
||
set_mode("classification")
|
||
```
|
||
|
||
. . .
|
||
|
||
<br></br>
|
||
|
||
::: r-fit-text
|
||
All available models are listed at <https://www.tidymodels.org/find/parsnip/>
|
||
:::
|
||
|
||
|
||
## Workflows
|
||
|
||
```{r good-workflow}
|
||
#| echo: false
|
||
#| out-width: '70%'
|
||
#| fig-align: 'center'
|
||
knitr::include_graphics("images/good_workflow.png")
|
||
```
|
||
|
||
|
||
## 为什么要使用 `workflow()`?
|
||
|
||
|
||
- 与基本的 R 工具相比,工作流能更好地处理新的因子水平
|
||
|
||
. . .
|
||
|
||
- 除了公式之外,还可以使用其他的预处理器(更多关于高级 tidymodels 中的特征工程!)
|
||
|
||
. . .
|
||
|
||
- 在使用多个模型时,它们可以帮助组织工作
|
||
|
||
. . .
|
||
|
||
- [最重要的是]{.underline},工作流涵盖了整个建模过程:`fit()` 和 `predict()` 不仅适用于实际的模型拟合,还适用于预处理步骤
|
||
|
||
::: notes
|
||
工作流比基本的 R 处理水平更好的两种方式:
|
||
|
||
- 强制要求在预测时不允许出现新的水平(这是一个可选的检查,可以关闭)
|
||
|
||
- 恢复在拟合时存在但在预测时缺失的水平(例如,“新”数据中没有该水平的实例)
|
||
:::
|
||
|
||
|
||
## A model workflow
|
||
|
||
```{r tree-spec}
|
||
tree_spec <-
|
||
decision_tree(cost_complexity = 0.002) %>%
|
||
set_mode("classification")
|
||
|
||
tree_spec %>%
|
||
fit(tip ~ ., data = taxi_train)
|
||
```
|
||
|
||
## A model workflow
|
||
|
||
```{r tree-wflow}
|
||
tree_spec <-
|
||
decision_tree(cost_complexity = 0.002) %>%
|
||
set_mode("classification")
|
||
|
||
workflow() %>%
|
||
add_formula(tip ~ .) %>%
|
||
add_model(tree_spec) %>%
|
||
fit(data = taxi_train)
|
||
```
|
||
|
||
## A model workflow
|
||
|
||
```{r tree-wflow-fit}
|
||
tree_spec <-
|
||
decision_tree(cost_complexity = 0.002) %>%
|
||
set_mode("classification")
|
||
|
||
workflow(tip ~ ., tree_spec) %>%
|
||
fit(data = taxi_train)
|
||
```
|
||
|
||
## 预测
|
||
|
||
How do you use your new `tree_fit` model?
|
||
|
||
```{r tree-wflow-fit-2}
|
||
tree_spec <-
|
||
decision_tree(cost_complexity = 0.002) %>%
|
||
set_mode("classification")
|
||
|
||
tree_fit <-
|
||
workflow(tip ~ ., tree_spec) %>%
|
||
fit(data = taxi_train)
|
||
```
|
||
|
||
## 练习
|
||
|
||
*Run:*
|
||
|
||
`predict(tree_fit, new_data = taxi_test)`
|
||
|
||
|
||
|
||
. . .
|
||
|
||
|
||
*Run:*
|
||
|
||
`augment(tree_fit, new_data = taxi_test)`
|
||
|
||
*What do you get?*
|
||
|
||
|
||
## tidymodels 的预测
|
||
|
||
- 预测结果始终在一个 **tibble** 内
|
||
- 列名和类型可读性强
|
||
- `new_data` 中的行数和输出中的行数**相同**
|
||
|
||
## 理解模型
|
||
|
||
如何 **理解**`tree_fit` 模型?
|
||
|
||
```{r plot-tree-fit-4}
|
||
#| echo: false
|
||
#| fig-align: center
|
||
#| fig-width: 8
|
||
#| fig-height: 5
|
||
#| out-width: 100%
|
||
library(rpart.plot)
|
||
tree_fit %>%
|
||
extract_fit_engine() %>%
|
||
rpart.plot(roundint = FALSE)
|
||
```
|
||
|
||
## Evaluating models: 预测值
|
||
|
||
```{r}
|
||
#| echo: false
|
||
library(tidymodels)
|
||
|
||
set.seed(123)
|
||
taxi_split <- initial_split(taxi, prop = 0.8, strata = tip)
|
||
taxi_train <- training(taxi_split)
|
||
taxi_test <- testing(taxi_split)
|
||
|
||
tree_spec <- decision_tree(cost_complexity = 0.0001, mode = "classification")
|
||
taxi_wflow <- workflow(tip ~ ., tree_spec)
|
||
taxi_fit <- fit(taxi_wflow, taxi_train)
|
||
```
|
||
|
||
```{r taxi-fit-augment}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
relocate(tip, .pred_class, .pred_yes, .pred_no)
|
||
```
|
||
|
||
## Confusion matrix
|
||
|
||
![](images/confusion-matrix.png)
|
||
|
||
## Confusion matrix
|
||
|
||
```{r conf-mat}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
conf_mat(truth = tip, estimate = .pred_class)
|
||
```
|
||
|
||
## Confusion matrix
|
||
|
||
```{r conf-mat-plot}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
conf_mat(truth = tip, estimate = .pred_class) %>%
|
||
autoplot(type = "heatmap")
|
||
```
|
||
|
||
## Metrics for model performance
|
||
|
||
::: columns
|
||
::: {.column width="60%"}
|
||
```{r acc}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
accuracy(truth = tip, estimate = .pred_class)
|
||
```
|
||
:::
|
||
|
||
::: {.column width="40%"}
|
||
![](images/confusion-matrix-accuracy.png)
|
||
:::
|
||
:::
|
||
|
||
## 二分类模型评估
|
||
|
||
模型的敏感性(Sensitivity)和特异性(Specificity)是评估二分类模型性能的重要指标:
|
||
|
||
- **敏感性**(Sensitivity),也称为真阳性率,衡量了模型正确识别正类别样本的能力。公式为真阳性数除以真阳性数加上假阴性数:
|
||
|
||
$$
|
||
\text{Sensitivity} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}
|
||
$$
|
||
|
||
|
||
- **特异性**(Specificity),也称为真阴性率,衡量了模型正确识别负类别样本的能力。公式为真阴性数除以真阴性数加上假阳性数:
|
||
|
||
$$
|
||
\text{Specificity} = \frac{\text{True Negatives}}{\text{True Negatives} + \text{False Positives}}
|
||
$$
|
||
|
||
在评估模型时,我们希望敏感性和特异性都很高。高敏感性表示模型能够捕获真正的正类别样本,高特异性表示模型能够准确排除负类别样本。
|
||
|
||
|
||
## Metrics for model performance
|
||
|
||
::: columns
|
||
::: {.column width="60%"}
|
||
```{r sens}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
sensitivity(truth = tip, estimate = .pred_class)
|
||
```
|
||
:::
|
||
|
||
::: {.column width="40%"}
|
||
![](images/confusion-matrix-sensitivity.png)
|
||
:::
|
||
:::
|
||
|
||
|
||
## Metrics for model performance
|
||
|
||
::: columns
|
||
::: {.column width="60%"}
|
||
```{r sens-2}
|
||
#| code-line-numbers: "3-6"
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
sensitivity(truth = tip, estimate = .pred_class)
|
||
```
|
||
|
||
<br>
|
||
|
||
```{r spec}
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
specificity(truth = tip, estimate = .pred_class)
|
||
```
|
||
:::
|
||
|
||
::: {.column width="40%"}
|
||
![](images/confusion-matrix-specificity.png)
|
||
:::
|
||
:::
|
||
|
||
## Metrics for model performance
|
||
|
||
We can use `metric_set()` to combine multiple calculations into one
|
||
|
||
```{r taxi-metrics}
|
||
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
|
||
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
taxi_metrics(truth = tip, estimate = .pred_class)
|
||
```
|
||
|
||
## Metrics for model performance
|
||
|
||
```{r taxi-metrics-grouped}
|
||
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
|
||
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
group_by(local) %>%
|
||
taxi_metrics(truth = tip, estimate = .pred_class)
|
||
```
|
||
|
||
|
||
## Varying the threshold
|
||
|
||
```{r}
|
||
#| label: thresholds
|
||
#| echo: false
|
||
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
roc_curve(truth = tip, .pred_yes) %>%
|
||
filter(is.finite(.threshold)) %>%
|
||
pivot_longer(c(specificity, sensitivity), names_to = "statistic", values_to = "value") %>%
|
||
rename(`event threshold` = .threshold) %>%
|
||
ggplot(aes(x = `event threshold`, y = value, col = statistic, group = statistic)) +
|
||
geom_line() +
|
||
scale_color_brewer(palette = "Dark2") +
|
||
labs(y = NULL) +
|
||
coord_equal() +
|
||
theme(legend.position = "top")
|
||
```
|
||
|
||
## ROC 曲线
|
||
|
||
- ROC(Receiver Operating Characteristic)曲线用于评估二分类模型的性能,特别是在不同的阈值下比较模型的敏感性和特异性。
|
||
- ROC曲线的横轴是假阳性率(False Positive Rate,FPR),纵轴是真阳性率(True Positive Rate,TPR)。在ROC曲线上,每个点对应于一个特定的阈值。通过改变阈值,我们可以观察到模型在不同条件下的表现。
|
||
- ROC曲线越接近左上角(0,1)点,说明模型的性能越好,因为这表示在较低的假阳性率下,模型能够获得较高的真阳性率。ROC曲线下面积(Area Under the ROC Curve,AUC)也是评估模型性能的一种指标,AUC值越大表示模型性能越好。
|
||
|
||
|
||
|
||
## ROC curve plot
|
||
|
||
```{r roc-curve}
|
||
#| fig-width: 6
|
||
#| fig-height: 6
|
||
#| output-location: "column"
|
||
|
||
augment(taxi_fit, new_data = taxi_train) %>%
|
||
roc_curve(truth = tip, .pred_yes) %>%
|
||
autoplot()
|
||
```
|
||
|
||
|
||
## 过度拟合
|
||
|
||
![](./images/tuning-overfitting-train-1.svg)
|
||
|
||
## 过度拟合
|
||
|
||
![](images/tuning-overfitting-test-1.svg)
|
||
|
||
|
||
## Cross-validation {background-color="white" background-image="https://www.tmwr.org/premade/resampling.svg" background-size="80%"}
|
||
|
||
## Cross-validation
|
||
|
||
![](https://www.tmwr.org/premade/three-CV.svg)
|
||
|
||
## Cross-validation
|
||
|
||
![](https://www.tmwr.org/premade/three-CV-iter.svg)
|
||
|
||
## Cross-validation
|
||
|
||
```{r vfold-cv}
|
||
vfold_cv(taxi_train) # v = 10 is default
|
||
```
|
||
|
||
## Cross-validation
|
||
|
||
What is in this?
|
||
|
||
```{r taxi-splits}
|
||
taxi_folds <- vfold_cv(taxi_train)
|
||
taxi_folds$splits[1:3]
|
||
```
|
||
|
||
::: notes
|
||
Talk about a list column, storing non-atomic types in dataframe
|
||
:::
|
||
|
||
## Cross-validation
|
||
|
||
```{r vfold-cv-v}
|
||
vfold_cv(taxi_train, v = 5)
|
||
```
|
||
|
||
## Cross-validation
|
||
|
||
```{r vfold-cv-strata}
|
||
vfold_cv(taxi_train, strata = tip)
|
||
```
|
||
|
||
. . .
|
||
|
||
Stratification often helps, with very little downside
|
||
|
||
## Cross-validation
|
||
|
||
We'll use this setup:
|
||
|
||
```{r taxi-folds}
|
||
set.seed(123)
|
||
taxi_folds <- vfold_cv(taxi_train, v = 10, strata = tip)
|
||
taxi_folds
|
||
```
|
||
|
||
. . .
|
||
|
||
Set the seed when creating resamples
|
||
|
||
|
||
## Fit our model to the resamples
|
||
|
||
```{r fit-resamples}
|
||
taxi_res <- fit_resamples(taxi_wflow, taxi_folds)
|
||
taxi_res
|
||
```
|
||
|
||
## Evaluating model performance
|
||
|
||
```{r collect-metrics}
|
||
taxi_res %>%
|
||
collect_metrics()
|
||
```
|
||
|
||
::: notes
|
||
collect_metrics() 是一套 collect_*() 函数之一,可用于处理调参结果的列。调参结果中以 . 为前缀的大多数列都有对应的 collect_*() 函数,可以进行常见摘要选项的汇总。
|
||
:::
|
||
|
||
. . .
|
||
|
||
We can reliably measure performance using only the **training** data 🎉
|
||
|
||
## Comparing metrics
|
||
|
||
How do the metrics from resampling compare to the metrics from training and testing?
|
||
|
||
```{r calc-roc-auc}
|
||
#| echo: false
|
||
taxi_training_roc_auc <-
|
||
taxi_fit %>%
|
||
augment(taxi_train) %>%
|
||
roc_auc(tip, .pred_yes) %>%
|
||
pull(.estimate) %>%
|
||
round(digits = 2)
|
||
|
||
taxi_testing_roc_auc <-
|
||
taxi_fit %>%
|
||
augment(taxi_test) %>%
|
||
roc_auc(tip, .pred_yes) %>%
|
||
pull(.estimate) %>%
|
||
round(digits = 2)
|
||
```
|
||
|
||
::: columns
|
||
::: {.column width="50%"}
|
||
```{r collect-metrics-2}
|
||
taxi_res %>%
|
||
collect_metrics() %>%
|
||
select(.metric, mean, n)
|
||
```
|
||
:::
|
||
|
||
::: {.column width="50%"}
|
||
The ROC AUC previously was
|
||
|
||
- `r taxi_training_roc_auc` for the training set
|
||
- `r taxi_testing_roc_auc` for test set
|
||
:::
|
||
:::
|
||
|
||
. . .
|
||
|
||
Remember that:
|
||
|
||
⚠️ the training set gives you overly optimistic metrics
|
||
|
||
⚠️ the test set is precious
|
||
|
||
## Evaluating model performance
|
||
|
||
```{r save-predictions}
|
||
# Save the assessment set results
|
||
ctrl_taxi <- control_resamples(save_pred = TRUE)
|
||
taxi_res <- fit_resamples(taxi_wflow, taxi_folds, control = ctrl_taxi)
|
||
|
||
taxi_res
|
||
```
|
||
|
||
## Evaluating model performance
|
||
|
||
```{r collect-predictions}
|
||
# Save the assessment set results
|
||
taxi_preds <- collect_predictions(taxi_res)
|
||
taxi_preds
|
||
```
|
||
|
||
## Evaluating model performance
|
||
|
||
```{r taxi-metrics-by-id}
|
||
taxi_preds %>%
|
||
group_by(id) %>%
|
||
taxi_metrics(truth = tip, estimate = .pred_class)
|
||
```
|
||
|
||
## Where are the fitted models?
|
||
|
||
```{r taxi-res}
|
||
taxi_res
|
||
```
|
||
|
||
|
||
## Bootstrapping
|
||
|
||
![](https://www.tmwr.org/premade/bootstraps.svg)
|
||
|
||
## Bootstrapping
|
||
|
||
```{r bootstraps}
|
||
set.seed(3214)
|
||
bootstraps(taxi_train)
|
||
```
|
||
|
||
|
||
## Monte Carlo Cross-Validation
|
||
|
||
```{r mc-cv}
|
||
set.seed(322)
|
||
mc_cv(taxi_train, times = 10)
|
||
```
|
||
|
||
## Validation set
|
||
|
||
```{r validation-split}
|
||
set.seed(853)
|
||
taxi_val_split <- initial_validation_split(taxi, strata = tip)
|
||
validation_set(taxi_val_split)
|
||
```
|
||
|
||
|
||
## Create a random forest model
|
||
|
||
```{r rf-spec}
|
||
rf_spec <- rand_forest(trees = 1000, mode = "classification")
|
||
rf_spec
|
||
```
|
||
|
||
## Create a random forest model
|
||
|
||
```{r rf-wflow}
|
||
rf_wflow <- workflow(tip ~ ., rf_spec)
|
||
rf_wflow
|
||
```
|
||
|
||
## Evaluating model performance
|
||
|
||
```{r collect-metrics-rf}
|
||
ctrl_taxi <- control_resamples(save_pred = TRUE)
|
||
|
||
# Random forest uses random numbers so set the seed first
|
||
|
||
set.seed(2)
|
||
rf_res <- fit_resamples(rf_wflow, taxi_folds, control = ctrl_taxi)
|
||
collect_metrics(rf_res)
|
||
```
|
||
|
||
## The whole game - status update
|
||
|
||
```{r diagram-select, echo = FALSE}
|
||
#| fig-align: "center"
|
||
|
||
knitr::include_graphics("images/whole-game-transparent-select.jpg")
|
||
```
|
||
|
||
## The final fit
|
||
|
||
```{r final-fit}
|
||
# taxi_split has train + test info
|
||
final_fit <- last_fit(rf_wflow, taxi_split)
|
||
|
||
final_fit
|
||
```
|
||
|
||
## 何为`final_fit`?
|
||
|
||
```{r collect-metrics-final-fit}
|
||
collect_metrics(final_fit)
|
||
```
|
||
|
||
. . .
|
||
|
||
These are metrics computed with the **test** set
|
||
|
||
## 何为`final_fit`?
|
||
|
||
```{r collect-predictions-final-fit}
|
||
collect_predictions(final_fit)
|
||
```
|
||
|
||
## 何为`final_fit`?
|
||
|
||
```{r extract-workflow}
|
||
extract_workflow(final_fit)
|
||
```
|
||
|
||
. . .
|
||
|
||
Use this for **prediction** on new data, like for deploying
|
||
|
||
|
||
|
||
|
||
## Tuning models - Specifying tuning parameters
|
||
|
||
|
||
```{r}
|
||
#| label: tag-for-tuning
|
||
#| code-line-numbers: "1|"
|
||
|
||
rf_spec <- rand_forest(min_n = tune()) %>%
|
||
set_mode("classification")
|
||
|
||
rf_wflow <- workflow(tip ~ ., rf_spec)
|
||
rf_wflow
|
||
```
|
||
|
||
## Try out multiple values
|
||
|
||
`tune_grid()` works similar to `fit_resamples()` but covers multiple parameter values:
|
||
|
||
```{r}
|
||
#| label: rf-tune_grid
|
||
#| code-line-numbers: "2|3-4|5|"
|
||
|
||
set.seed(22)
|
||
rf_res <- tune_grid(
|
||
rf_wflow,
|
||
taxi_folds,
|
||
grid = 5
|
||
)
|
||
```
|
||
|
||
## Compare results
|
||
|
||
Inspecting results and selecting the best-performing hyperparameter(s):
|
||
|
||
```{r}
|
||
#| label: rf-results
|
||
|
||
show_best(rf_res)
|
||
|
||
best_parameter <- select_best(rf_res)
|
||
best_parameter
|
||
```
|
||
|
||
`collect_metrics()` and `autoplot()` are also available.
|
||
|
||
## The final fit
|
||
|
||
```{r}
|
||
#| label: rf-finalize
|
||
|
||
rf_wflow <- finalize_workflow(rf_wflow, best_parameter)
|
||
|
||
final_fit <- last_fit(rf_wflow, taxi_split)
|
||
|
||
collect_metrics(final_fit)
|
||
```
|
||
|
||
# 实践部分
|
||
|
||
|
||
## 数据
|
||
|
||
```{r}
|
||
require(tidyverse)
|
||
sitedf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-01/nla2007_sampledlakeinformation_20091113.csv") |>
|
||
select(SITE_ID,
|
||
lon = LON_DD,
|
||
lat = LAT_DD,
|
||
name = LAKENAME,
|
||
area = LAKEAREA,
|
||
zmax = DEPTHMAX
|
||
) |>
|
||
group_by(SITE_ID) |>
|
||
summarize(lon = mean(lon, na.rm = TRUE),
|
||
lat = mean(lat, na.rm = TRUE),
|
||
name = unique(name),
|
||
area = mean(area, na.rm = TRUE),
|
||
zmax = mean(zmax, na.rm = TRUE))
|
||
|
||
|
||
visitdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
|
||
select(SITE_ID,
|
||
date = DATE_PROFILE,
|
||
year = YEAR,
|
||
visit = VISIT_NO
|
||
) |>
|
||
distinct()
|
||
|
||
|
||
|
||
waterchemdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
|
||
select(SITE_ID,
|
||
date = DATE_PROFILE,
|
||
depth = DEPTH,
|
||
temp = TEMP_FIELD,
|
||
do = DO_FIELD,
|
||
ph = PH_FIELD,
|
||
cond = COND_FIELD,
|
||
)
|
||
|
||
sddf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_secchi_20091008.csv") |>
|
||
select(SITE_ID,
|
||
date = DATE_SECCHI,
|
||
sd = SECMEAN,
|
||
clear_to_bottom = CLEAR_TO_BOTTOM
|
||
)
|
||
|
||
trophicdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_trophic_conditionestimate_20091123.csv") |>
|
||
select(SITE_ID,
|
||
visit = VISIT_NO,
|
||
tp = PTL,
|
||
tn = NTL,
|
||
chla = CHLA) |>
|
||
left_join(visitdf, by = c("SITE_ID", "visit")) |>
|
||
select(-year, -visit) |>
|
||
group_by(SITE_ID, date) |>
|
||
summarize(tp = mean(tp, na.rm = TRUE),
|
||
tn = mean(tn, na.rm = TRUE),
|
||
chla = mean(chla, na.rm = TRUE)
|
||
)
|
||
|
||
|
||
|
||
phytodf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_phytoplankton_softalgaecount_20091023.csv") |>
|
||
select(SITE_ID,
|
||
date = DATEPHYT,
|
||
depth = SAMPLE_DEPTH,
|
||
phyta = DIVISION,
|
||
genus = GENUS,
|
||
species = SPECIES,
|
||
tax = TAXANAME,
|
||
abund = ABUND) |>
|
||
mutate(phyta = gsub(" .*$", "", phyta)) |>
|
||
filter(!is.na(genus)) |>
|
||
group_by(SITE_ID, date, depth, phyta, genus) |>
|
||
summarize(abund = sum(abund, na.rm = TRUE)) |>
|
||
nest(phytodf = -c(SITE_ID, date))
|
||
|
||
envdf <- waterchemdf |>
|
||
filter(depth < 2) |>
|
||
select(-depth) |>
|
||
group_by(SITE_ID, date) |>
|
||
summarise_all(~mean(., na.rm = TRUE)) |>
|
||
ungroup() |>
|
||
left_join(sddf, by = c("SITE_ID", "date")) |>
|
||
left_join(trophicdf, by = c("SITE_ID", "date"))
|
||
|
||
nla <- envdf |>
|
||
left_join(phytodf) |>
|
||
left_join(sitedf, by = "SITE_ID") |>
|
||
filter(!purrr::map_lgl(phytodf, is.null)) |>
|
||
mutate(cyanophyta = purrr::map(phytodf, ~ .x |>
|
||
dplyr::filter(phyta == "Cyanophyta") |>
|
||
summarize(cyanophyta = sum(abund, na.rm = TRUE))
|
||
)) |>
|
||
unnest(cyanophyta) |>
|
||
select(-phyta) |>
|
||
mutate(clear_to_bottom = ifelse(is.na(clear_to_bottom), TRUE, FALSE))
|
||
|
||
|
||
# library(rmdify)
|
||
# library(dwfun)
|
||
# dwfun::init()
|
||
|
||
```
|
||
|
||
|
||
## 数据
|
||
|
||
```{r}
|
||
skimr::skim(nla)
|
||
```
|
||
|
||
|
||
|
||
## 简单模型
|
||
|
||
```{r}
|
||
nla |>
|
||
filter(tp > 1) |>
|
||
ggplot(aes(tn, tp)) +
|
||
geom_point() +
|
||
geom_smooth(method = "lm") +
|
||
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
|
||
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
|
||
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
|
||
labels = scales::trans_format("log10", scales::math_format(10^.x)))
|
||
|
||
m1 <- lm(log10(tp) ~ log10(tn), data = nla)
|
||
|
||
summary(m1)
|
||
|
||
|
||
```
|
||
|
||
## 复杂指标
|
||
|
||
```{r}
|
||
nla |>
|
||
filter(tp > 1) |>
|
||
ggplot(aes(tp, cyanophyta)) +
|
||
geom_point() +
|
||
geom_smooth(method = "lm") +
|
||
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
|
||
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
|
||
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
|
||
labels = scales::trans_format("log10", scales::math_format(10^.x)))
|
||
|
||
m2 <- lm(log10(cyanophyta) ~ log10(tp), data = nla)
|
||
|
||
summary(m2)
|
||
|
||
|
||
```
|
||
|
||
|
||
|
||
|
||
## tidymodels - Data split
|
||
|
||
```{r}
|
||
(nla_split <- rsample::initial_split(nla, prop = 0.7, strata = zmax))
|
||
(nla_train <- training(nla_split))
|
||
(nla_test <- testing(nla_split))
|
||
|
||
```
|
||
|
||
## tidymodels - recipe
|
||
|
||
```{r}
|
||
nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn + chla + clear_to_bottom")
|
||
# nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn")
|
||
nla_recipe <- recipes::recipe(nla_formula, data = nla_train) |>
|
||
recipes::step_string2factor(all_nominal()) |>
|
||
recipes::step_nzv(all_nominal()) |>
|
||
recipes::step_log(chla, cyanophyta, base = 10) |>
|
||
recipes::step_normalize(all_numeric_predictors()) |>
|
||
prep()
|
||
nla_recipe
|
||
```
|
||
|
||
## tidymodels - cross validation
|
||
|
||
```{r}
|
||
nla_cv <- recipes::bake(
|
||
nla_recipe,
|
||
new_data = training(nla_split)
|
||
) |>
|
||
rsample::vfold_cv(v = 10)
|
||
nla_cv
|
||
```
|
||
|
||
## tidymodels - Model specification
|
||
|
||
```{r}
|
||
xgboost_model <- parsnip::boost_tree(
|
||
mode = "regression",
|
||
trees = 1000,
|
||
min_n = tune(),
|
||
tree_depth = tune(),
|
||
learn_rate = tune(),
|
||
loss_reduction = tune()
|
||
) |>
|
||
set_engine("xgboost", objective = "reg:squarederror")
|
||
xgboost_model
|
||
```
|
||
|
||
|
||
## tidymodels - Grid specification
|
||
|
||
```{r}
|
||
# grid specification
|
||
xgboost_params <- dials::parameters(
|
||
min_n(),
|
||
tree_depth(),
|
||
learn_rate(),
|
||
loss_reduction()
|
||
)
|
||
xgboost_params
|
||
```
|
||
|
||
## tidymodels - Grid specification
|
||
|
||
```{r}
|
||
xgboost_grid <- dials::grid_max_entropy(
|
||
xgboost_params,
|
||
size = 60
|
||
)
|
||
knitr::kable(head(xgboost_grid))
|
||
```
|
||
|
||
## tidymodels - Workflow
|
||
|
||
```{r}
|
||
xgboost_wf <- workflows::workflow() |>
|
||
add_model(xgboost_model) |>
|
||
add_formula(nla_formula)
|
||
xgboost_wf
|
||
```
|
||
|
||
|
||
## tidymodels - Tune
|
||
|
||
```{r}
|
||
#| cache: true
|
||
# hyperparameter tuning
|
||
if (FALSE) {
|
||
xgboost_tuned <- tune::tune_grid(
|
||
object = xgboost_wf,
|
||
resamples = nla_cv,
|
||
grid = xgboost_grid,
|
||
metrics = yardstick::metric_set(rmse, rsq, mae),
|
||
control = tune::control_grid(verbose = TRUE)
|
||
)
|
||
saveRDS(xgboost_tuned, "./xgboost_tuned.RDS")
|
||
}
|
||
xgboost_tuned <- readRDS("./xgboost_tuned.RDS")
|
||
```
|
||
|
||
## tidymodels - Best model
|
||
|
||
```{r}
|
||
xgboost_tuned |>
|
||
tune::show_best(metric = "rmse") |>
|
||
knitr::kable()
|
||
```
|
||
|
||
|
||
## tidymodels - Best model
|
||
|
||
```{r}
|
||
xgboost_tuned |>
|
||
collect_metrics()
|
||
```
|
||
|
||
|
||
## tidymodels - Best model
|
||
|
||
```{r}
|
||
#| fig-width: 9
|
||
#| fig-height: 5
|
||
#| out-width: "100%"
|
||
xgboost_tuned |>
|
||
autoplot()
|
||
```
|
||
|
||
|
||
## tidymodels - Best model
|
||
|
||
|
||
```{r}
|
||
xgboost_best_params <- xgboost_tuned |>
|
||
tune::select_best("rmse")
|
||
|
||
knitr::kable(xgboost_best_params)
|
||
```
|
||
|
||
|
||
## tidymodels - Final model
|
||
|
||
```{r}
|
||
xgboost_model_final <- xgboost_model |>
|
||
finalize_model(xgboost_best_params)
|
||
xgboost_model_final
|
||
```
|
||
|
||
|
||
## tidymodels - Train evaluation
|
||
|
||
|
||
```{r}
|
||
(train_processed <- bake(nla_recipe, new_data = nla_train))
|
||
```
|
||
|
||
## tidymodels - Train data
|
||
|
||
```{r}
|
||
train_prediction <- xgboost_model_final |>
|
||
# fit the model on all the training data
|
||
fit(
|
||
formula = nla_formula,
|
||
data = train_processed
|
||
) |>
|
||
# predict the sale prices for the training data
|
||
predict(new_data = train_processed) |>
|
||
bind_cols(nla_train |>
|
||
mutate(.obs = log10(cyanophyta)))
|
||
xgboost_score_train <-
|
||
train_prediction |>
|
||
yardstick::metrics(.obs, .pred) |>
|
||
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
|
||
knitr::kable(xgboost_score_train)
|
||
|
||
```
|
||
|
||
## tidymodels - train evaluation
|
||
|
||
```{r}
|
||
#| fig-width: 5
|
||
#| fig-height: 3
|
||
#| out-width: "80%"
|
||
train_prediction |>
|
||
ggplot(aes(.pred, .obs)) +
|
||
geom_point() +
|
||
geom_smooth(method = "lm")
|
||
|
||
|
||
```
|
||
|
||
|
||
## tidymodels - test data
|
||
|
||
|
||
```{r}
|
||
test_processed <- bake(nla_recipe, new_data = nla_test)
|
||
|
||
test_prediction <- xgboost_model_final |>
|
||
# fit the model on all the training data
|
||
fit(
|
||
formula = nla_formula,
|
||
data = train_processed
|
||
) |>
|
||
# use the training model fit to predict the test data
|
||
predict(new_data = test_processed) |>
|
||
bind_cols(nla_test |>
|
||
mutate(.obs = log10(cyanophyta)))
|
||
|
||
# measure the accuracy of our model using `yardstick`
|
||
xgboost_score <- test_prediction |>
|
||
yardstick::metrics(.obs, .pred) |>
|
||
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
|
||
|
||
knitr::kable(xgboost_score)
|
||
```
|
||
|
||
|
||
## tidymodels - evaluation
|
||
|
||
```{r}
|
||
#| fig-width: 5
|
||
#| fig-height: 3
|
||
#| out-width: "80%"
|
||
cyanophyta_prediction_residual <- test_prediction |>
|
||
arrange(.pred) %>%
|
||
mutate(residual_pct = (.obs - .pred) / .pred) |>
|
||
select(.pred, residual_pct)
|
||
|
||
cyanophyta_prediction_residual |>
|
||
ggplot(aes(x = .pred, y = residual_pct)) +
|
||
geom_point() +
|
||
xlab("Predicted Cyanophyta") +
|
||
ylab("Residual (%)")
|
||
```
|
||
|
||
|
||
|
||
|
||
## tidymodels - test evaluation
|
||
|
||
```{r}
|
||
#| fig-width: 5
|
||
#| fig-height: 3
|
||
#| out-width: "80%"
|
||
test_prediction |>
|
||
ggplot(aes(.pred, .obs)) +
|
||
geom_point() +
|
||
geom_smooth(method = "lm", colour = "black")
|
||
|
||
```
|
||
|
||
|
||
|
||
## 欢迎讨论!{.center}
|
||
|
||
|
||
`r rmdify::slideend(wechat = FALSE, type = "public", tel = FALSE, thislink = "https://drwater.rcees.ac.cn/course/public/RWEP/@PUB/SD/")`
|
||
|