---
title: "空间分析"
subtitle: 《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution
author: 苏命、王为东
中国科学院大学资源与环境学院
中国科学院生态环境研究中心
date: today
lang: zh
format:
revealjs:
theme: dark
slide-number: true
chalkboard:
buttons: true
preview-links: auto
lang: zh
toc: true
toc-depth: 1
toc-title: 大纲
logo: ./_extensions/inst/img/ucaslogo.png
css: ./_extensions/inst/css/revealjs.css
pointer:
key: "p"
color: "#32cd32"
pointerSize: 18
revealjs-plugins:
- pointer
filters:
- d2
knitr:
opts_chunk:
dev: "svg"
retina: 3
execute:
freeze: auto
cache: true
echo: true
fig-width: 5
fig-height: 6
---
## 目录
1. 空间数据基础概念
2. Simple Features (SF) 核心规范
3. SFEXT扩展功能实战
4. 空间关系与几何操作
5. 空间统计分析方法
6. 综合实战案例
## 1. 空间数据基础概念
### 空间数据类型体系
```r
library(sf)
# 创建示例几何类型
st_point(c(0, 0)) # 点
st_linestring(rbind(c(0, 0), c(1, 1))) # 线
st_polygon(list(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 0)))) # 面
```
### 坐标参考系(CRS)
```r
# 常用坐标系定义
wgs84 <- st_crs(4326) # 经纬度坐标
utm50n <- st_crs(32650) # UTM 50N投影
cat(st_crs(wgs84)$proj4string)
```
## 2. Simple Features (SF) 核心规范
### 创建SF对象
```r
# 从数据框转换
df <- data.frame(
city = c("Beijing", "Shanghai"),
pop = c(2171, 2424),
geometry = st_sfc(
st_point(c(116.4, 39.9)),
st_point(c(121.5, 31.2))
)
)
sf_df <- st_as_sf(df, crs = 4326)
```
### 数据IO操作
```r
# 写入/读取空间文件
st_write(sf_df, "cities.shp")
new_sf <- st_read("cities.shp")
# 从内置数据集加载
nc <- st_read(system.file("shape/nc.shp", package = "sf"))
```
## 3. SFEXT扩展功能实战
### 高级几何生成
```r
remotes::install_github("r-spatial/sfext")
library(sfext)
# 生成渔网网格
grid <- st_regular_grid(
xmin = 0,
ymin = 0,
xmax = 100,
ymax = 100,
cell_size = 10
)
plot(grid)
```
### 空间索引加速
```r
# 创建空间索引
system.time(
without_idx <- st_intersects(nc, nc)
)
system.time(
with_idx <- st_intersects(st_make_valid(nc), sparse = TRUE)
)
```
## 4. 空间关系与操作
### 拓扑关系判断
```r
p1 <- st_point(c(0, 0))
p2 <- st_point(c(1, 1))
st_distance(p1, p2) # 距离计算
poly <- st_polygon(list(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 0))))
st_contains(poly, p1) # 包含关系
```
### 几何变换操作
```r
# 缓冲区分析
buf <- st_buffer(nc[1, ], dist = 0.1)
plot(buf)
plot(nc[1, ]$geometry, add = TRUE, col = 'red')
# 凸包计算
convex <- st_convex_hull(nc)
plot(convex)
```
## 5. 空间统计分析方法
### 点模式分析
```r
library(spatstat)
# 创建点模式对象
ppp <- ppp(x = runif(100), y = runif(100), window = owin(c(0, 1), c(0, 1)))
# K函数分析
K <- Kest(ppp)
plot(K, main = "Ripley's K函数")
```
### 空间自相关检验
```r
library(spdep)
# Moran's I检验
nb <- poly2nb(nc)
lw <- nb2listw(nb)
moran.test(nc$BIR74, lw)
```
## 6. 综合实战案例
### 城市公园服务区分析
```r
library(osmdata)
library(sfnetworks)
# 获取OSM数据
parks <- opq("New York") %>%
add_osm_feature("leisure", "park") %>%
osmdata_sf()
roads <- opq("New York") %>%
add_osm_feature("highway") %>%
osmdata_sf()
# 构建网络分析
net <- as_sfnetwork(roads$osm_lines) %>%
st_transform(32618)
# 计算服务范围(示例)
service_area <- st_network_blend(net, parks$osm_polygons) %>%
st_buffer(500) # 500米服务区
```
## 可视化增强技巧
### 分层绘图
```r
library(ggplot2)
ggplot() +
geom_sf(data = nc, aes(fill = BIR74)) +
geom_sf(data = service_area, alpha = 0.3) +
scale_fill_viridis_c() +
theme_minimal()
```
### 交互可视化
```r
library(mapview)
mapview(nc, zcol = "BIR74", burst = TRUE) +
mapview(service_area, alpha.regions = 0.2)
```
# 实践案例
## 中国地图
::: panel-tabset
### Code
```{r}
#| echo: true
#| eval: false
#| out-width: 50%
library(tidyverse)
library(sf)
# 更稳定的预处理数据源(含港澳台)
# china <- st_read("https://geo.datav.aliyun.com/areas_v3/bound/100000.json")
china <- st_read("./中华人民共和国.json", quiet = TRUE)
library(ggplot2)
ggplot(china) +
geom_sf(fill = "#F6F6F6", color = "#666666", size = 0.3) +
theme_void() +
labs(title = "China")
# 添加模拟经济数据(实际应用可连接统计年鉴)
set.seed(123)
china$gdp <- runif(nrow(china), 100, 1000) # 模拟GDP数据(亿元)
china |>
ggplot() +
geom_sf(aes(fill = gdp), color = "gray90", size = 0.2) +
scale_fill_gradientn(
colours = c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c"),
name = NULL
) +
theme_void() +
theme(legend.position = c(0.85, 0.3))
```
### Output
```{r}
#| echo: false
#| out-width: 80%
#| fig-width: 6
#| fig-height: 3
library(tidyverse)
library(sf)
# 更稳定的预处理数据源(含港澳台)
# china <- st_read("https://geo.datav.aliyun.com/areas_v3/bound/100000.json")
china <- st_read("./中华人民共和国.json", quiet = TRUE)
library(ggplot2)
ggplot(china) +
geom_sf(fill = "#F6F6F6", color = "#666666", size = 0.3) +
theme_void() +
labs(title = "China")
# 添加模拟经济数据(实际应用可连接统计年鉴)
set.seed(123)
china$gdp <- runif(nrow(china), 100, 1000) # 模拟GDP数据(亿元)
china |>
ggplot() +
geom_sf(aes(fill = gdp), color = "gray90", size = 0.2) +
scale_fill_gradientn(
colours = c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c"),
name = NULL
) +
theme_void() +
theme(legend.position = c(0.85, 0.3))
```
:::
## Kriging
::: panel-tabset
### Code
```{r}
#| echo: true
#| eval: false
#| out-width: 50%
require(sf)
require(sp)
require(gstat)
require(raster)
require(ggplot2)
# 读取太湖边界
lake_boundary <- st_read("../../data/taihu.shp") |>
sf::st_make_valid()
main_water <- st_difference(
lake_boundary[lake_boundary$Name == "boundary", ],
st_union(lake_boundary[lake_boundary$Name != "boundary", ])
)
get_kriging <- function(indf, Yvarname, grid = NULL, boundsf = main_water) {
insf <- indf |>
sfext::df_to_sf(crs = 4326, coords = c("long", "lat")) |>
dplyr::select(-c("long", "lat")) |>
dplyr::rename(Y = tidyselect::all_of(Yvarname))
if (is.null(grid)) {
# 1. 将sf边界转为terra格式
v <- terra::vect(boundsf)
# 2. 创建基础网格
base_grid <- terra::rast(v, resolution = 0.002) # 基础低分辨率
# 3. 创建高分辨率区域(例如边界附近)
buffer_zone <- buffer(v, width = 0.005) # 边界附近创建缓冲区
hi_res_grid <- terra::rast(buffer_zone, resolution = 0.001)
# 4. 合并网格
final_grid <- merge(base_grid, hi_res_grid)
# 5. 转为点并裁剪
grid <- terra::as.points(final_grid) |>
sf::st_as_sf() |>
sf::st_filter(main_water)
}
insp <- sf::as_Spatial(insf)
fit <- automap::autofitVariogram(Y ~ 1, insp)
# 克里金插值
m <- gstat::gstat(
formula = Y ~ 1,
data = insp,
model = fit$var_model
)
predsf <- predict(m, grid) |>
sf::st_as_sf()
outsf <- predsf |>
st_coordinates() |>
as.data.frame() |>
cbind(pred = predsf$var1.pred)
return(outsf)
}
wqdf <- readxl::read_xlsx("../../data/wqdata.xlsx")
if (FALSE) {
wqsf <- wqdf |>
nest(datedf = -date) |>
dplyr::mutate(
krigingsf = purrr::map(datedf, \(x) {
get_kriging(x, "conc", boundsf = main_water)
})
)
saveRDS(wqsf, "./wqsf.rds")
}
wqsf <- readRDS("./wqsf.rds")
wqsf |>
unnest(krigingsf) |>
ggplot(aes(X, Y)) +
geom_contour_filled(aes(z = pred), bins = 20) +
geom_sf(
data = main_water,
aes(x = NULL, y = NULL),
fill = NA,
colour = "black",
linewidth = 1
) +
# scale_fill_gradientn(colors = hcl.colors(100, "RdYlBu")) + # 设置颜色渐变
# ggsci::scale_fill_aaas() +
coord_sf() +
theme_void()
```
### Output
```{r}
#| echo: false
#| out-width: 80%
#| message: false
#| fig-width: 6
#| fig-height: 3
require(sf)
require(sp)
require(gstat)
require(raster)
require(ggplot2)
# 读取太湖边界
lake_boundary <- st_read("../../data/taihu.shp", quiet = TRUE) |>
sf::st_make_valid()
main_water <- st_difference(
lake_boundary[lake_boundary$Name == "boundary", ],
st_union(lake_boundary[lake_boundary$Name != "boundary", ])
)
get_kriging <- function(indf, Yvarname, grid = NULL, boundsf = main_water) {
insf <- indf |>
sfext::df_to_sf(crs = 4326, coords = c("long", "lat")) |>
dplyr::select(-c("long", "lat")) |>
dplyr::rename(Y = tidyselect::all_of(Yvarname))
if (is.null(grid)) {
# 1. 将sf边界转为terra格式
v <- terra::vect(boundsf)
# 2. 创建基础网格
base_grid <- terra::rast(v, resolution = 0.002) # 基础低分辨率
# 3. 创建高分辨率区域(例如边界附近)
buffer_zone <- buffer(v, width = 0.005) # 边界附近创建缓冲区
hi_res_grid <- terra::rast(buffer_zone, resolution = 0.001)
# 4. 合并网格
final_grid <- merge(base_grid, hi_res_grid)
# 5. 转为点并裁剪
grid <- terra::as.points(final_grid) |>
sf::st_as_sf() |>
sf::st_filter(main_water)
}
insp <- sf::as_Spatial(insf)
fit <- automap::autofitVariogram(Y ~ 1, insp)
# 克里金插值
m <- gstat::gstat(
formula = Y ~ 1,
data = insp,
model = fit$var_model
)
predsf <- predict(m, grid) |>
sf::st_as_sf()
outsf <- predsf |>
st_coordinates() |>
as.data.frame() |>
cbind(pred = predsf$var1.pred)
return(outsf)
}
wqdf <- readxl::read_xlsx("../../data/wqdata.xlsx")
if (FALSE) {
wqsf <- wqdf |>
nest(datedf = -date) |>
dplyr::mutate(
krigingsf = purrr::map(datedf, \(x) {
get_kriging(x, "conc", boundsf = main_water)
})
)
saveRDS(wqsf, "./wqsf.rds")
}
wqsf <- readRDS("./wqsf.rds")
wqsf |>
unnest(krigingsf) |>
ggplot(aes(X, Y)) +
geom_contour_filled(aes(z = pred), bins = 20) +
geom_sf(
data = main_water,
aes(x = NULL, y = NULL),
fill = NA,
colour = "black",
linewidth = 1
) +
# scale_fill_gradientn(colors = hcl.colors(100, "RdYlBu")) + # 设置颜色渐变
# ggsci::scale_fill_aaas() +
coord_sf() +
theme_void()
```
:::
## 学习资源
1. SF官方文档:https://r-spatial.github.io/sf/
2. 《Geocomputation with R》在线书
3. R-spatial教程:https://github.com/r-spatial/workshops
```
### 使用说明:
1. 需要R 4.0+环境
2. 推荐安装依赖:
```r
install.packages(c("sf", "spatstat", "spdep", "osmdata", "sfnetworks", "ggplot2", "mapview"))
remotes::install_github("r-spatial/sfext")
```
3. 实际案例数据可替换为本地shapefile
4. 交互可视化部分需要浏览器支持
## 欢迎讨论!{.center}
`r rmdify::slideend(wechat = FALSE, type = "public", tel = FALSE, thislink = "https://drc.drwater.net/course/public/RWEP/PUB/SD/")`