--- title: 课后作业8 author: 姓名 format: html --- # 下载airquality.xlsx,并读取数据 ```{r} #| eval: false #| execute: false # 下载至临时文件 tmpxlsxpath <- file.path(tempdir(), "airquality.xlsx") download.file("https://drwater.rcees.ac.cn/git/course/RWEP/raw/branch/PUB/data/airquality.xlsx", destfile = tmpxlsxpath) airqualitydf <- readxl::read_xlsx(tmpxlsxpath, sheet = 2) metadf <- readxl::read_xlsx(tmpxlsxpath, sheet = 1) ``` # 根据`airqualitydf.xlsx`,按采样点统计白天(8:00-20:00)与夜晚(20:00-8:00)中空气质量指数(AQI)中位数,按城市统计低于所有采样点AQI30%分位值的采样点占比,列出上述占比最高的10个城市(不考虑采样点数低于5个的城市)。 ```{r} #| eval: false #| execute: false require(tidyverse) airqualitydf |> select(datetime, site, AQI) |> filter(!is.na(AQI)) |> group_by(site) |> summarize(AQI.median = median(AQI, na.rm = TRUE)) |> left_join(metadf |> select(site, city = Area)) |> group_by(city) |> filter(n() > 5) |> summarize(p = sum(AQI.median < quantile(airqualitydf$AQI, probs = 0.5, na.rm = TRUE)) / n()) |> top_n(10, p) airqualitydf |> select(datetime, site, AQI) |> filter(!is.na(AQI)) |> group_by(site) |> summarize(AQI.median = median(AQI, na.rm = TRUE)) airqualitydf |> select(datetime, site, AQI) |> filter(!is.na(AQI)) |> left_join(metadf |> select(site, city = Area)) |> group_by(city) |> filter(length(unique(site)) >= 5) |> summarize(p = sum(AQI < quantile(airqualitydf$AQI, probs = 0.2, na.rm = TRUE)) / n()) |> slice_max(p, n = 10) ``` # 按照不同城市分组,统计白天与夜晚AQI中位数是否具有显著差异。 ```{r} #| eval: false if (FALSE) { require(infer) testdf <- airqualitydf |> select(datetime, site, AQI) |> filter(!is.na(AQI)) |> left_join(metadf |> select(site, city = Area)) |> group_by(city) |> filter(length(unique(site)) >= 5) |> mutate(dayornight = factor(ifelse(between(hour(datetime), 8, 20), "day", "night"), levels = c("day", "night")) ) |> group_by(city) |> nest(citydf = -city) |> mutate(median_diff = purrr::map_dbl(citydf, ~ .x |> specify(AQI ~ dayornight) |> calculate(stat = "diff in medians", order = c("day", "night")) |> pull(stat) )) |> ungroup() |> # slice_sample(n = 12) |> mutate(null_dist = purrr::map(citydf, ~ .x |> specify(AQI ~ dayornight) |> hypothesize(null = "independence") |> generate(reps = 1000, type = "permute") |> calculate(stat = "diff in medians", order = c("day", "night")) )) |> mutate(fig = purrr::pmap(list(null_dist, median_diff, city), ~ visualize(..1) + shade_p_value(obs_stat = ..2, direction = "both") + ggtitle(..3) )) |> mutate(p_value = purrr::map2_dbl(null_dist, median_diff, ~ get_p_value(.x, obs_stat = .y, direction = "both") |> pull(p_value) )) |> arrange(p_value) |> mutate(sigdiff = ifelse(p_value < 0.01, "显著差异", "无显著差异")) testdf |> select(city, sigdiff) |> knitr::kable() lang <- "cn" (testdf |> slice_sample(n = 9) |> pull(fig)) |> patchwork::wrap_plots(ncol = 3) + dwfun::theme_sci(5, 5) dwfun::ggsavep("./testdf.pdf") } ```