---
title: "数据可视化"
subtitle: 《区域水环境污染数据分析实践》<br>Data analysis practice of regional water environment pollution
author: 苏命、王为东<br>中国科学院大学资源与环境学院<br>中国科学院生态环境研究中心
date: today
lang: zh
format:
  revealjs:
    theme: dark
    slide-number: true
    chalkboard:
      buttons: true
    preview-links: auto
    lang: zh
    toc: true
    toc-depth: 1
    toc-title: 大纲
    logo: ./_extensions/inst/img/ucaslogo.png
    css: ./_extensions/inst/css/revealjs.css
    pointer:
      key: "p"
      color: "#32cd32"
      pointerSize: 18
revealjs-plugins:
  - pointer
filters:
  - d2
knitr:
  opts_chunk:
    dev: "svg"
    retina: 3
execute:
  freeze: auto
  cache: true
  echo: true
  fig-width: 5
  fig-height: 6
---

```{r}
#| include: false
#| cache: false
knitr::opts_chunk$set(echo = TRUE)
source("../../coding/_common.R")
require(learnr)
library(tidyverse)
library(palmerpenguins)
library(ggthemes)
```



##  {background-image="../../img/concepts/tidyverse-packages-ggplot.png" background-position="center" background-size="100%"}



## The ggplot2 Package

<br>

... is an **R package to visualize data** created by Hadley Wickham in 2005

```{r}
#| label: ggplot-package-install-2
#| eval: false
# install.packages("ggplot2")
library(ggplot2)
```

<br>

::: fragment
... is part of the [`{tidyverse}`](https://www.tidyverse.org/)

```{r}
#| label: tidyverse-package-install-2
#| eval: false
# install.packages("tidyverse")
library(tidyverse)
```
:::

# The Grammar of {ggplot2}



## The Grammar of {ggplot2}

<br>
<table style='width:100%;font-size:14pt;'>
  <tr>
    <th>Component</th>
    <th>Function</th>
    <th>Explanation</th>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Data</b></td>
    <td><code>ggplot(data)</code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
    <td>*The raw data that you want to visualise.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Aesthetics&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</b></td>
    <td><code>aes()</code></td>
    <td>*Aesthetic mappings between variables and visual properties.*</td>
  <tr>
    <td><b style='color:#67676;'>Geometries</b></td>
    <td><code>geom_*()</code></td>
    <td>*The geometric shapes representing the data.*</td>
  </tr>
</table>



## The Grammar of {ggplot2}


<br>
<table style='width:100%;font-size:14pt;'>
  <tr>
    <th>Component</th>
    <th>Function</th>
    <th>Explanation</th>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Data</b></td>
    <td><code>ggplot(data)</code>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td>
    <td>*The raw data that you want to visualise.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Aesthetics&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</b></td>
    <td><code>aes()</code></td>
    <td>*Aesthetic mappings between variables and visual properties.*</td>
  <tr>
    <td><b style='color:#67676;'>Geometries</b></td>
    <td><code>geom_*()</code></td>
    <td>*The geometric shapes representing the data.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Statistics</b></td>
    <td><code>stat_*()</code></td>
    <td>*The statistical transformations applied to the data.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Scales</b></td>
    <td><code>scale_*()</code></td>
    <td>*Maps between the data and the aesthetic dimensions.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Coordinate System</b></td>
    <td><code>coord_*()</code></td>
    <td>*Maps data into the plane of the data rectangle.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Facets</b></td>
    <td><code>facet_*()</code></td>
    <td>*The arrangement of the data into a grid of plots.*</td>
  </tr>
  <tr>
    <td><b style='color:#67676;'>Visual Themes</b></td>
    <td><code>theme() / theme_*()</code></td>
    <td>*The overall visual defaults of a plot.*</td>
  </tr>
</table>



## The Data

<b style='font-size:2.3rem;'>Bike sharing counts in London, UK, powered by [TfL Open Data](https://tfl.gov.uk/modes/cycling/santander-cycles)</b>

::: incremental
-   covers the years 2015 and 2016
-   incl. weather data acquired from [freemeteo.com](https://freemeteo.com)
-   prepared by Hristo Mavrodiev for [Kaggle](https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset)
:::

<br>

::: fragment
```{r}
#| label: data-import
bikes <- readr::read_csv("../../data/ggplot2/london-bikes-custom.csv",
  ## or: "https://raw.githubusercontent.com/z3tt/graphic-design-ggplot2/main/data/london-bikes-custom.csv"
  col_types = "Dcfffilllddddc"
)

bikes$season <- forcats::fct_inorder(bikes$season)
```
:::

------------------------------------------------------------------------

```{r}
#| label: data-table
#| echo: false
#| purl: false
library(tidyverse)
tibble(
    Variable = names(bikes),
    Description = c(
      "Date encoded as `YYYY-MM-DD`", "`day` (6:00am–5:59pm) or `night` (6:00pm–5:59am)", "`2015` or `2016`", "`1` (January) to `12` (December)", "`winter`, `spring`, `summer`, or `autumn`", "Sum of reported bikes rented", "`TRUE` being Monday to Friday and no bank holiday", "`TRUE` being Saturday or Sunday", "`TRUE` being a bank holiday in the UK", "Average air temperature (°C)", "Average feels like temperature (°C)", "Average air humidity (%)", "Average wind speed (km/h)", "Most common weather type"
    ),
    Class = c(
      "date", "character", "factor", "factor", "factor", "integer", "logical", "logical", "logical", "double", "double", "double", "double", "character"
    )
  ) %>%
  kableExtra::kbl(
    booktabs = TRUE, longtable = TRUE
  ) %>%
  kableExtra::kable_styling(
    font_size = 20
  ) %>%
  kableExtra::kable_minimal(
    "hover", full_width = TRUE, position = "left", html_font = "Spline Sans Mono"
  )
```

## `ggplot2::ggplot()`

```{r}
#| label: ggplot-function
#| eval: false
#| echo: false
#?ggplot
```

![](../../img/concepts/ggplot-fun-help.png){fig-alt="The help page of the ggplot() function." fig-width="175%"}

## Data

```{r}
#| label: setup-ggplot-slides
#| include: false
#| purl: false
library(ggplot2)
theme_set(theme_grey(base_size = 14))
```

```{r}
#| label: ggplot-data
#| output-location: column
ggplot(data = bikes)
```

## Aesthetic Mapping(视觉映射):`aes(.)`

<br>

<b class='simple-highlight-grn' style='font-size:2.6rem;'>= link variables to graphical properties</b><br><br>

::: incremental
-   positions (`x`, `y`)
-   colors (`color`, `fill`)
-   shapes (`shape`, `linetype`)
-   size (`size`)
-   transparency (`alpha`)
-   groupings (`group`)
:::

## Aesthetic Mapping(视觉映射):`aes(.)`

```{r}
#| label: ggplot-aesthetics-outside
#| output-location: column
#| code-line-numbers: "2|1,2"
ggplot(data = bikes) +
  aes(x = temp_feel, y = count)
```

## <span style='color:#4758AB;'>aes</span>thetics

`aes()` outside as component

```{r}
#| label: ggplot-aesthetics-outside-comp
#| eval: false
ggplot(data = bikes) +
  aes(x = temp_feel, y = count)
```

<br>

::: fragment
`aes()` inside, explicit matching

```{r}
#| label: ggplot-aesthetics-inside
#| eval: false
ggplot(data = bikes, mapping = aes(x = temp_feel, y = count))
```

<br>
:::

::: fragment
`aes()` inside, implicit matching

```{r}
#| label: ggplot-aesthetics-inside-implicit
#| eval: false
ggplot(bikes, aes(temp_feel, count))
```

<br>
:::

::: fragment
`aes()` inside, mixed matching

```{r}
#| label: ggplot-aesthetics-inside-mix
#| eval: false
ggplot(bikes, aes(x = temp_feel, y = count))
```
:::

# Geometrical Layers 

## Geometries(几何图层):geom_*

<br>

<b class='simple-highlight-grn' style='font-size:2.6rem;'>= interpret aesthetics as graphical representations</b><br><br>

::: incremental
-   points
-   lines
-   polygons
-   text labels
-   ...
:::

## Geometries(几何图层):geom_*

```{r}
#| label: geom-point
#| output-location: column
#| code-line-numbers: "1,2,3,4|5"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point()
```

## Visual Properties of Layers(图层属性)

```{r}
#| label: geom-point-properties
#| output-location: column
#| code-line-numbers: "5,6,7,8,9,10,11|6,7,8,9,10"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    color = "#28a87d",
    alpha = .5,
    shape = "X",
    stroke = 1,
    size = 4
  )
```

## Setting vs Mapping of Visual Properties

::: {layout-ncol="2"}
```{r}
#| label: geom-point-properties-set
#| fig-height: 3.5
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    color = "#28a87d",
    alpha = .5
  )
```

::: fragment
```{r}
#| label: geom-point-properties-map
#| fig-height: 3.5
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    aes(color = season),
    alpha = .5
  )
```
:::
:::

## Mapping Expressions

```{r}
#| label: geom-point-aes-expression
#| output-location: column
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    aes(color = temp_feel > 20),
    alpha = .5
  )
```

## Filter Data

```{r}
#| label: geom-point-aes-expression-exercise-na
#| output-location: column
#| code-line-numbers: "2"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = temp, y = temp_feel)
  ) +
  geom_point(
    aes(color = weather_type == "clear",
        size = count),
    shape = 18,
    alpha = .5
  )
```

## Filter Data

```{r}
#| label: geom-point-aes-expression-exercise-na-pipe
#| output-location: column
#| code-line-numbers: "2"
ggplot(
    bikes %>% filter(!is.na(weather_type)),
    aes(x = temp, y = temp_feel)
  ) +
  geom_point(
    aes(color = weather_type == "clear",
        size = count),
    shape = 18,
    alpha = .5
  )
```

```{r}
#| label: reset-theme
#| include: false
#| purl: false
theme_set(theme_grey(base_size = 14))
```

## Local vs. Global(应用至当前图层或所有图层)

::: {layout-ncol="2"}
```{r}
#| label: geom-point-aes-geom
#| code-line-numbers: "3,6"
#| fig-height: 3.2
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    aes(color = season),
    alpha = .5
  )
```

::: fragment
```{r}
#| label: geom-point-aes-global
#| code-line-numbers: "3,4"
#| fig-height: 3.2
ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season)
  ) +
  geom_point(
    alpha = .5
  )
```
:::
:::

## Adding More Layers

```{r}
#| label: geom-smooth
#| output-location: column
#| code-line-numbers: "9,10,11"
ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season)
  ) +
  geom_point(
    alpha = .5
  ) +
  geom_smooth(
    method = "lm"
  )
```

## Global Color Encoding

```{r}
#| label: geom-smooth-aes-global
#| output-location: column
#| code-line-numbers: "3,4,9,10,11"
ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season)
  ) +
  geom_point(
    alpha = .5
  ) +
  geom_smooth(
    method = "lm"
  )
```

## Local Color Encoding

```{r}
#| label: geom-smooth-aes-fixed
#| output-location: column
#| code-line-numbers: "6,9,10,11"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    aes(color = season),
    alpha = .5
  ) +
  geom_smooth(
    method = "lm"
  )
```

## The \`group\` Aesthetic

```{r}
#| label: geom-smooth-aes-grouped
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point(
    aes(color = season),
    alpha = .5
  ) +
  geom_smooth(
    aes(group = day_night),
    method = "lm"
  )
```

## Set Both as Global Aesthetics

```{r}
#| label: geom-smooth-aes-global-grouped
#| output-location: column
#| code-line-numbers: "4,5"
ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season,
        group = day_night)
  ) +
  geom_point(
    alpha = .5
  ) +
  geom_smooth(
    method = "lm"
  )
```

## Overwrite Global Aesthetics

```{r}
#| label: geom-smooth-aes-global-grouped-overwrite
#| output-location: column
#| code-line-numbers: "4,12"
ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season,
        group = day_night)
  ) +
  geom_point(
    alpha = .5
  ) +
  geom_smooth(
    method = "lm",
    color = "black"
  )
```



# Statistical Layers


## \`stat_\*()\` and \`geom_\*()\`

::: {layout-ncol="2"}
```{r}
#| label: stat-geom
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = temp_feel, y = count)) +
  stat_smooth(geom = "smooth")
```

```{r}
#| label: geom-stat
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = temp_feel, y = count)) +
  geom_smooth(stat = "smooth")
```
:::


## \`stat_\*()\` and \`geom_\*()\`

::: {layout-ncol="2"}
```{r}
#| label: stat-geom-2
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = season)) +
  stat_count(geom = "bar")
```

```{r}
#| label: geom-stat-2
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = season)) +
  geom_bar(stat = "count")
```
:::


## \`stat_\*()\` and \`geom_\*()\`

::: {layout-ncol="2"}
```{r}
#| label: stat-geom-3
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = date, y = temp_feel)) +
  stat_identity(geom = "point")
```

```{r}
#| label: geom-stat-3
#| fig-height: 5.1
#| code-line-numbers: "2"
ggplot(bikes, aes(x = date, y = temp_feel)) +
  geom_point(stat = "identity")
```
:::

## Statistical Summaries

```{r}
#| label: stat-summary
#| output-location: column
#| code-line-numbers: "5|3"
ggplot(
    bikes, 
    aes(x = season, y = temp_feel)
  ) +
  stat_summary() 
```


## Statistical Summaries

```{r}
#| label: stat-summary-defaults
#| output-location: column
#| code-line-numbers: "6,7"
ggplot(
    bikes, 
    aes(x = season, y = temp_feel)
  ) +
  stat_summary(
    fun.data = mean_se, ## the default
    geom = "pointrange"  ## the default
  ) 
```


## Statistical Summaries

```{r}
#| label: stat-summary-median
#| output-location: column
#| code-line-numbers: "5|5,6,11|6,7,8,9,10,11|7,8"
ggplot(
    bikes, 
    aes(x = season, y = temp_feel)
  ) +
  geom_boxplot() +
  stat_summary(
    fun = mean,
    geom = "point",
    color = "#28a87d",
    size = 3
  ) 
```


## Statistical Summaries

```{r}
#| label: stat-summary-custom
#| output-location: column
#| code-line-numbers: "5,6,7,8,9|7,8"
ggplot(
    bikes, 
    aes(x = season, y = temp_feel)
  ) +
  stat_summary(
    fun = mean, 
    fun.max = function(y) mean(y) + sd(y), 
    fun.min = function(y) mean(y) - sd(y) 
  ) 
```



# Extending a ggplot

## Store a ggplot as Object

```{r}
#| label: ggplot-object
#| code-line-numbers: "1,16"
g <-
  ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season,
        group = day_night)
  ) +
  geom_point(
    alpha = .5
  ) +
  geom_smooth(
    method = "lm",
    color = "black"
  )

class(g)
```

## Inspect a ggplot Object

```{r}
#| label: ggplot-object-data
g$data
```

## Inspect a ggplot Object

```{r}
#| label: ggplot-object-mapping
g$mapping
```

## Extend a ggplot Object: Add Layers

```{r}
#| label: ggplot-object-extend-geom
#| output-location: column
g +
  geom_rug(
    alpha = .2
  )
```

## Remove a Layer from the Legend

```{r}
#| label: geom-guide-none
#| output-location: column
#| code-line-numbers: "4"
g +
  geom_rug(
    alpha = .2,
    show.legend = FALSE
  )
```

## Extend a ggplot Object: Add Labels

```{r}
#| label: ggplot-labs-individual
#| output-location: column
#| code-line-numbers: "2,3,4"
g +
  xlab("Feels-like temperature (°F)") +
  ylab("Reported bike shares") +
  ggtitle("TfL bike sharing trends")
```

## Extend a ggplot Object: Add Labels

```{r}
#| label: ggplot-labs-bundled
#| output-location: column
#| code-line-numbers: "2,3,4,5,6"
g +
  labs(
    x = "Feels-like temperature (°F)",
    y = "Reported bike shares",
    title = "TfL bike sharing trends"
  )
```

## Extend a ggplot Object: Add Labels

```{r}
#| label: ggplot-labs-bundled-color
#| output-location: column
#| code-line-numbers: "6"
g <- g +
  labs(
    x = "Feels-like temperature (°F)",
    y = "Reported bike shares",
    title = "TfL bike sharing trends",
    color = "Season:"
  )

g
```

## Extend a ggplot Object: Add Labels

```{r}
#| label: ggplot-labs-bundled-extended
#| output-location: column
#| code-line-numbers: "6,7,9"
g +
  labs(
    x = "Feels-like temperature (°F)",
    y = "Reported bike shares",
    title = "TfL bike sharing trends",
    subtitle = "Reported bike rents versus feels-like temperature in London",
    caption = "Data: TfL",
    color = "Season:",
    tag = "Fig. 1"
  )
```

## Extend a ggplot Object: Add Labels

::: {layout-ncol="2"}
```{r}
#| label: ggplot-labs-empty-vs-null-A
#| fig-height: 3.6
#| code-line-numbers: "3"
g +
  labs(
    x = "",
    caption = "Data: TfL"
  )
```

```{r}
#| label: ggplot-labs-empty-vs-null-B
#| fig-height: 3.6
#| code-line-numbers: "3"
g +
  labs(
    x = NULL,
    caption = "Data: TfL"
  )
```
:::

## Extend a ggplot Object: Themes

::: {layout-ncol="2"}
```{r}
#| label: ggplot-object-extend-theme-light
#| fig-height: 5.5
g + theme_light()
```

::: fragment
```{r}
#| label: ggplot-object-extend-theme-minimal
#| fig-height: 5.5
g + theme_minimal()
```
:::
:::

## Change the Theme Base Settings

```{r}
#| label: ggplot-theme-extend-theme-base
#| output-location: column
#| code-line-numbers: "2,3|1,2,3,4"
g + theme_light(
  base_size = 14
)
```

## Set a Theme Globally

```{r}
#| label: ggplot-theme-global
#| output-location: column
theme_set(theme_light())

g
```

## Change the Theme Base Settings

```{r}
#| label: ggplot-theme-global-base
#| output-location: column
#| code-line-numbers: "2,3|1,2,3,4"
theme_set(theme_light(
  base_size = 14
))

g
```


## Overwrite Specific Theme Settings

```{r}
#| label: ggplot-theme-settings-individual-1
#| output-location: column
#| code-line-numbers: "2|3"
g +
  theme(
    panel.grid.minor = element_blank()
  )
```

## Overwrite Specific Theme Settings

```{r}
#| label: ggplot-theme-settings-individual-2
#| output-location: column
#| code-line-numbers: "4"
g +
  theme(
    panel.grid.minor = element_blank(),
    plot.title = element_text(face = "bold")
  )
```

## Overwrite Specific Theme Settings

```{r}
#| label: ggplot-theme-settings-individual-3
#| output-location: column
#| code-line-numbers: "5"
g +
  theme(
    panel.grid.minor = element_blank(),
    plot.title = element_text(face = "bold"),
    legend.position = "top"
  )
```

## Overwrite Specific Theme Settings

```{r}
#| label: ggplot-theme-settings-individual-legend-none
#| output-location: column
#| code-line-numbers: "5"
g +
  theme(
    panel.grid.minor = element_blank(),
    plot.title = element_text(face = "bold"),
    legend.position = "none"
  )
```

## Overwrite Specific Theme Settings

```{r}
#| label: ggplot-theme-settings-individual-4
#| output-location: column
#| code-line-numbers: "6|2,3,4,6,7"
g +
  theme(
    panel.grid.minor = element_blank(),
    plot.title = element_text(face = "bold"),
    legend.position = "top",
    plot.title.position = "plot"
  )
```

## Overwrite Theme Settings Globally

```{r}
#| label: ggplot-theme-settings-global
#| output-location: column
#| code-line-numbers: "1|2,3,4,5|1,2,3,4,5,6"
theme_update(
  panel.grid.minor = element_blank(),
  plot.title = element_text(face = "bold"),
  legend.position = "top",
  plot.title.position = "plot"
)

g
```

## Save the Graphic

```{r}
#| label: ggplot-save
#| eval: false
ggsave(g, filename = "my_plot.png")
```

::: fragment
```{r}
#| label: ggplot-save-implicit
#| eval: false
ggsave("my_plot.png")
```
:::

::: fragment
```{r}
#| label: ggplot-save-aspect
#| eval: false
ggsave("my_plot.png", width = 8, height = 5, dpi = 600)
```
:::

::: fragment
```{r}
#| label: ggplot-save-vector
#| eval: false
ggsave("my_plot.pdf", width = 20, height = 12, unit = "cm", device = cairo_pdf)
```
:::

::: fragment
```{r}
#| label: ggplot-save-cairo_pdf
#| eval: false
grDevices::cairo_pdf("my_plot.pdf", width = 10, height = 7)
g
dev.off()
```
:::

------------------------------------------------------------------------

<br>

![Modified from canva.com](../../img/concepts/vector-raster-canva.png){fig-alt="A comparison of vector and raster graphics." fig-width="150%"}

# Facets(面)

## Facets(面)

<br>

<b class='simple-highlight-grn' style='font-size:2.6rem;'>= split variables to multiple panels</b><br><br>

::: fragment
Facets are also known as:

-   small multiples
-   trellis graphs
-   lattice plots
-   conditioning
:::

------------------------------------------------------------------------

::: {layout-ncol="2"}
```{r}
#| label: facet-types-wrap
#| echo: false
#| purl: false
ggplot(bikes, aes(x = 1, y = 1)) +
  geom_text(
    aes(label = paste0("Subset for\n", stringr::str_to_title(season))),
    size = 5, family = "Cabinet Grotesk", lineheight = .9
  ) +
  facet_wrap(~stringr::str_to_title(season)) +
  ggtitle("facet_wrap()") +
  theme_bw(base_size = 24) +
  theme(
    plot.title = element_text(hjust = .5, family = "Tabular", face = "bold"),
    strip.text = element_text(face = "bold", size = 18),
    panel.grid = element_blank(),
    axis.ticks = element_blank(),
    axis.text = element_blank(),
    axis.title = element_blank(),
    plot.background = element_rect(color = "#f8f8f8", fill = "#f8f8f8"),
    plot.margin = margin(t = 3, r = 25)
  )
```

::: fragment
```{r}
#| label: facet-types-grid
#| echo: false
#| purl: false
data <- tibble(
  x = 1, y = 1,
  day_night = c("Day", "Day", "Night", "Night"),
  year = factor(c("2015", "2016", "2015", "2016"), levels = levels(bikes$year)),
  label = c("Subset for\nDay × 2015", "Subset for\nDay × 2016",
            "Subset for\nNight × 2015", "Subset for\nNight × 2016")
)

ggplot(data, aes(x = 1, y = 1)) +
 geom_text(
    aes(label = label),
    size = 5, family = "Cabinet Grotesk", lineheight = .9
  ) +
  facet_grid(day_night ~ year) +
  ggtitle("facet_grid()") +
  theme_bw(base_size = 24) +
  theme(
    plot.title = element_text(hjust = .5, family = "Tabular", face = "bold"),
    strip.text = element_text(face = "bold", size = 18),
    panel.grid = element_blank(),
    axis.ticks = element_blank(),
    axis.text = element_blank(),
    axis.title = element_blank(),
    plot.background = element_rect(color = "#f8f8f8", fill = "#f8f8f8"),
    plot.margin = margin(t = 3, l = 25)
  )
```
:::
:::

## Setup

```{r}
#| label: theme-size-facets
#| include: false
#| purl: false
theme_set(theme_light(base_size = 12))

theme_update(
  panel.grid.minor = element_blank(),
  plot.title = element_text(face = "bold"),
  legend.position = "top",
  plot.title.position = "plot"
)
```

```{r}
#| label: facet-setup
#| output-location: column
#| code-line-numbers: "1,2,3,4,5,6,7,8,9,10|12"
g <-
  ggplot(
    bikes,
    aes(x = temp_feel, y = count,
        color = season)
  ) +
  geom_point(
    alpha = .3,
    guide = "none"
  )

g
```

## Wrapped Facets

```{r}
#| label: facet-wrap
#| output-location: column
#| code-line-numbers: "1,2,3,4|2,4|3"
g +
  facet_wrap(
    vars(day_night)
  )
```

## Wrapped Facets

```{r}
#| label: facet-wrap-circumflex
#| output-location: column
#| code-line-numbers: "3"
g +
  facet_wrap(
    ~ day_night
  )
```

## Facet Multiple Variables

```{r}
#| label: facet-wrap-multiple
#| output-location: column
#| code-line-numbers: "3"
g +
  facet_wrap(
    ~ is_workday + day_night
  )
```

## Facet Options: Cols + Rows

```{r}
#| label: facet-wrap-options-ncol
#| output-location: column
#| code-line-numbers: "4"
g +
  facet_wrap(
    ~ day_night,
    ncol = 1
  )
```

## Facet Options: Free Scaling

```{r}
#| label: facet-wrap-options-scales
#| output-location: column
#| code-line-numbers: "5"
g +
  facet_wrap(
    ~ day_night,
    ncol = 1,
    scales = "free"
  )
```

## Facet Options: Free Scaling

```{r}
#| label: facet-wrap-options-freey
#| output-location: column
#| code-line-numbers: "5"
g +
  facet_wrap(
    ~ day_night,
    ncol = 1,
    scales = "free_y"
  )
```

## Facet Options: Switch Labels

```{r}
#| label: facet-wrap-options-switch
#| output-location: column
#| code-line-numbers: "5"
g +
  facet_wrap(
    ~ day_night,
    ncol = 1,
    switch = "x"
  )
```

## Gridded Facets

```{r}
#| label: facet-grid
#| output-location: column
#| code-line-numbers: "2,5|3,4"
g +
  facet_grid(
    rows = vars(day_night),
    cols = vars(is_workday)
  )
```

## Gridded Facets

```{r}
#| label: facet-grid-circumflex
#| output-location: column
#| code-line-numbers: "3"
g +
  facet_grid(
    day_night ~ is_workday
  )
```

## Facet Multiple Variables

```{r}
#| label: facet-grid-multiple
#| output-location: column
#| code-line-numbers: "3"
g +
  facet_grid(
    day_night ~ is_workday + season
  )
```

## Facet Options: Free Scaling

```{r}
#| label: facet-grid-options-scales
#| output-location: column
#| code-line-numbers: "4"
g +
  facet_grid(
    day_night ~ is_workday,
    scales = "free"
  )
```

## Facet Options: Switch Labels

```{r}
#| label: facet-grid-options-switch
#| output-location: column
#| code-line-numbers: "5"
g +
  facet_grid(
    day_night ~ is_workday,
    scales = "free",
    switch = "y"
  )
```

## Facet Options: Proportional Spacing

```{r}
#| label: facet-grid-options-space
#| output-location: column
#| code-line-numbers: "4,5|5"
g +
  facet_grid(
    day_night ~ is_workday,
    scales = "free",
    space = "free"
  )
```

## Facet Options: Proportional Spacing

```{r}
#| label: facet-grid-options-space-y
#| output-location: column
#| code-line-numbers: "4,5"
g +
  facet_grid(
    day_night ~ is_workday,
    scales = "free_y",
    space = "free_y"
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-start
#| output-location: column
#| code-line-numbers: "1,2,3,4,5,6,7,8,9,10,11,12|8,9,10"
ggplot(
    diamonds,
    aes(x = carat, y = price)
  ) +
  geom_point(
    alpha = .3
  ) +
  geom_smooth(
    method = "lm",
    se = FALSE,
    color = "dodgerblue"
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet
#| output-location: column
#| code-line-numbers: "13,14,15,16,17"
ggplot(
    diamonds,
    aes(x = carat, y = price)
  ) +
  geom_point(
    alpha = .3
  ) +
  geom_smooth(
    method = "lm",
    se = FALSE,
    color = "dodgerblue"
  ) +
  facet_grid(
    cut ~ clarity,
    space = "free_x",
    scales = "free_x"
  )
```

## Diamonds Facet (Dark Theme Bonus)

```{r}
#| label: diamonds-facet-dark
#| output-location: column
#| code-line-numbers: "19,20,21,22"
ggplot(
    diamonds,
    aes(x = carat, y = price)
  ) +
  geom_point(
    alpha = .3,
    color = "white"
  ) +
  geom_smooth(
    method = "lm",
    se = FALSE,
    color = "dodgerblue"
  ) +
  facet_grid(
    cut ~ clarity,
    space = "free_x",
    scales = "free_x"
  ) +
  theme_dark(
    base_size = 14
  )
```

# Scales(尺度)

```{r}
#| label: theme-size-reset
#| include: false
#| purl: false
theme_set(theme_light(base_size = 14))

theme_update(
  panel.grid.minor = element_blank(),
  plot.title = element_text(face = "bold"),
  legend.position = "top",
  plot.title.position = "plot"
)
```

## Scales

<br>

<b class='simple-highlight-grn' style='font-size:2.6rem;'>= translate between variable ranges and property ranges</b><br><br>

::: incremental
-   feels-like temperature  ⇄  x
-   reported bike shares  ⇄  y
-   season  ⇄  color
-   year  ⇄  shape
-   ...
:::

## Scales

The `scale_*()` components control the properties of all the<br><b class='simple-highlight-ylw'>aesthetic dimensions mapped to the data.</b>

<br>Consequently, there are `scale_*()` functions for all aesthetics such as:

-   **positions** via `scale_x_*()` and `scale_y_*()`

-   **colors** via `scale_color_*()` and `scale_fill_*()`

-   **sizes** via `scale_size_*()` and `scale_radius_*()`

-   **shapes** via `scale_shape_*()` and `scale_linetype_*()`

-   **transparency** via `scale_alpha_*()`

## Scales

The `scale_*()` components control the properties of all the<br><b class='simple-highlight-ylw'>aesthetic dimensions mapped to the data.</b>

<br>The extensions (`*`) can be filled by e.g.:

-   `continuous()`, `discrete()`, `reverse()`, `log10()`, `sqrt()`, `date()` for positions

-   `continuous()`, `discrete()`, `manual()`, `gradient()`, `gradient2()`, `brewer()` for colors

-   `continuous()`, `discrete()`, `manual()`, `ordinal()`, `area()`, `date()` for sizes

-   `continuous()`, `discrete()`, `manual()`, `ordinal()` for shapes

-   `continuous()`, `discrete()`, `manual()`, `ordinal()`, `date()` for transparency

------------------------------------------------------------------------

![Illustration by [Allison Horst](https://github.com/allisonhorst/stats-illustrations)](../../img/concepts/continuous_discrete.png){fig-size="120%" fig-align="center" fig-alt="Allison Horsts illustration ofthe correct use of continuous versus discrete; however, in {ggplot2} these are interpeted in a different way: as quantitative and qualitative."}

## Continuous vs. Discrete in {ggplot2}

::: {layout-ncol="2"}
## Continuous:<br>quantitative or numerical data

-   height
-   weight
-   age
-   counts

## Discrete:<br>qualitative or categorical data

-   species
-   sex
-   study sites
-   age group
:::

## Continuous vs. Discrete in {ggplot2}

::: {layout-ncol="2"}
## Continuous:<br>quantitative or numerical data

-   height (continuous)
-   weight (continuous)
-   age (continuous or discrete)
-   counts (discrete)

## Discrete:<br>qualitative or categorical data

-   species (nominal)
-   sex (nominal)
-   study site (nominal or ordinal)
-   age group (ordinal)
:::

## Aesthetics + Scales

```{r}
#| label: scales-default-invisible
#| output-location: column
#| code-line-numbers: "3,4"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point()
```

## Aesthetics + Scales

```{r}
#| label: scales-default
#| output-location: column
#| code-line-numbers: "3,4,7,8,9|7,8,9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_date() +
  scale_y_continuous() +
  scale_color_discrete()
```

## Scales

```{r}
#| label: scales-overwrite-1
#| output-location: column
#| code-line-numbers: "7"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_continuous() +
  scale_y_continuous() +
  scale_color_discrete()
```

## Scales

```{r}
#| label: scales-overwrite-2
#| output-location: column
#| code-line-numbers: "8"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_continuous() +
  scale_y_log10() +
  scale_color_discrete()
```

## Scales

```{r}
#| label: scales-overwrite-3
#| output-location: column
#| code-line-numbers: "9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_continuous() +
  scale_y_log10() +
  scale_color_viridis_d()
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-trans
#| output-location: column
#| code-line-numbers: "8,9,10|9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +  
  geom_point() +
  scale_y_continuous(
    trans = "log10"
  )
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-name
#| output-location: column
#| code-line-numbers: "7,8,9|8"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares"
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-breaks-seq
#| output-location: column
#| code-line-numbers: "9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = seq(0, 60000, by = 15000)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-breaks-short
#| output-location: column
#| code-line-numbers: "9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = 0:4*15000
  )
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-breaks-irregular
#| output-location: column
#| code-line-numbers: "9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = c(0, 2:12*2500, 40000, 50000)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-labels
#| output-location: column
#| code-line-numbers: "8,10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares in thousands",
    breaks = 0:4*15000,
    labels = 0:4*15
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-labels-paste
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares in thousands",
    breaks = 0:4*15000,
    labels = paste(0:4*15000, "bikes")
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-limits
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = 0:4*15000,
    limits = c(NA, 60000)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-expand.no
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = 0:4*15000,
    expand = c(0, 0)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-expand
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = -1:5*15000,
    expand = c(.5, .5) ## c(add, mult)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-expand-add-explicit
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = -1:5*15000,
    expand = expansion(add = 2000)
  ) 
```

## \`scale_x\|y_continuous\`

```{r}
#| label: scales-xy-continuous-guide-none
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_y_continuous(
    name = "Reported bike shares",
    breaks = 0:4*15000,
    guide = "none"
  )
```

## \`scale_x\|y_date\`

```{r}
#| label: scales-xy-date-breaks-months
#| output-location: column
#| code-line-numbers: "7,10|7,8,9,10|9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_date(
    name = NULL,
    date_breaks = "4 months"
  )
```

## \`scale_x\|y_date\`

```{r}
#| label: scales-xy-date-breaks-weeks
#| output-location: column
#| code-line-numbers: "9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_date(
    name = NULL,
    date_breaks = "20 weeks"
  )
```

## \`scale_x\|y_date\` with \`strftime()\`

```{r}
#| label: scales-xy-date-labels
#| output-location: column
#| code-line-numbers: "9,10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_date(
    name = NULL,
    date_breaks = "6 months",
    date_labels = "%Y/%m/%d"
  )
```

## \`scale_x\|y_date\` with \`strftime()\`

```{r}
#| label: scales-xy-date-labels-special
#| output-location: column
#| code-line-numbers: "10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_x_date(
    name = NULL,
    date_breaks = "6 months",
    date_labels = "%b '%y"
  )
```

## \`scale_x\|y_discrete\`

```{r}
#| label: scales-xy-discrete
#| output-location: column
#| code-line-numbers: "3,6,9|6,7,8,9|7,8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  scale_x_discrete(
    name = "Period",
    labels = c("Dec-Feb", "Mar-May", "Jun-Aug", "Sep-Nov")
  )
```

## \`scale_x\|y_discrete\`

```{r}
#| label: scales-xy-discrete-expand
#| output-location: column
#| code-line-numbers: "8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  scale_x_discrete(
    name = "Season",
    expand = c(.5, 0) ## add, mult
  )
```

## Discrete or Continuous?

```{r}
#| label: scales-xy-fake-discrete-visible
#| output-location: column
#| code-line-numbers: "3,5,6,7"
ggplot(
    bikes,
    aes(x = as.numeric(season), y = count)
  ) +
  geom_boxplot(
    aes(group = season)
  )
```

## Discrete or Continuous?

```{r}
#| label: scales-xy-fake-discrete
#| output-location: column
#| code-line-numbers: "9,10,11,12,13|11|12"
ggplot(
    bikes,
    aes(x = as.numeric(season),
        y = count)
  ) +
  geom_boxplot(
    aes(group = season)
  ) +
  scale_x_continuous(
    name = "Season",
    breaks = 1:4,
    labels = levels(bikes$season)
  )
```

## Discrete or Continuous?

```{r}
#| label: scales-xy-fake-discrete-shift
#| output-location: column
#| code-line-numbers: "3,4"
ggplot(
    bikes,
    aes(x = as.numeric(season) + 
            as.numeric(season) / 8,
        y = count)
  ) +
  geom_boxplot(
    aes(group = season)
  ) +
  scale_x_continuous(
    name = "Season",
    breaks = 1:4,
    labels = levels(bikes$season)
  )
```

## \`scale_color\|fill_discrete\`

```{r}
#| label: scales-color-discrete-type-vector
#| output-location: column
#| code-line-numbers: "7,10|7,8,9,10|8,9"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_color_discrete(
    name = "Season:",
    type = c("#69b0d4", "#00CB79", "#F7B01B", "#a78f5f")
  )
```

## Inspect Assigned Colors

```{r}
#| label: scales-color-discrete-type-inspect
#| output-location: column
#| code-line-numbers: "1|12|14"
g <- ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_color_discrete(
    name = "Season:",
    type = c("#3ca7d9", "#1ec99b", "#F7B01B", "#bb7e8f")
  )

gb <- ggplot_build(g)

gb$data[[1]][c(1:5, 200:205, 400:405), 1:5]
```

## \`scale_color\|fill_discrete\`

```{r}
#| label: scales-color-discrete-type-vector-named
#| output-location: column
#| code-line-numbers: "1,2,3,4,5,6|1,16"
my_colors <- c(
  `winter` = "#3c89d9",
  `spring` = "#1ec99b",
  `summer` = "#F7B01B",
  `autumn` = "#a26e7c"
)

ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_color_discrete(
    name = "Season:",
    type = my_colors
  )
```

## \`scale_color\|fill_discrete\`

```{r}
#| label: scales-color-discrete-type-vector-named-shuffled
#| output-location: column
#| code-line-numbers: "2,5|1,16"
my_colors_alphabetical <- c(
  `autumn` = "#a26e7c",
  `spring` = "#1ec99b",
  `summer` = "#F7B01B",
  `winter` = "#3c89d9"
)

ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_color_discrete(
    name = "Season:",
    type = my_colors_alphabetical
  )
```

## \`scale_color\|fill_discrete\`

```{r}
#| label: scales-color-discrete-type-palette
#| output-location: column
#| code-line-numbers: "1|11,12,13"
library(RColorBrewer)

ggplot(
    bikes,
    aes(x = date, y = count,
        color = season)
  ) +
  geom_point() +
  scale_color_discrete(
    name = "Season:",
    type = brewer.pal(
      n = 4, name = "Dark2"
    )
  )
```

## \`scale_color\|fill_manual\`

```{r}
#| label: scales-color-manual-na
#| output-location: column
#| code-line-numbers: "4,9,10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = weather_type)
  ) +
  geom_point() +
  scale_color_manual(
    name = "Season:",
    values = brewer.pal(n = 6, name = "Pastel1"),
    na.value = "black"
  )
```

## \`scale_color\|fill_carto_d\`

```{r}
#| label: scales-color-discrete-carto
#| output-location: column
#| code-line-numbers: "7,8,9,10"
ggplot(
    bikes,
    aes(x = date, y = count,
        color = weather_type)
  ) +
  geom_point() +
  rcartocolor::scale_color_carto_d(
    name = "Season:",
    palette = "Pastel",
    na.value = "black"
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-store
#| output-location: column
#| code-line-numbers: "1|10|20"
facet <-
  ggplot(
    diamonds,
    aes(x = carat, y = price)
  ) +
  geom_point(
    alpha = .3
  ) +
  geom_smooth(
    aes(color = cut),
    method = "lm",
    se = FALSE
  ) +
  facet_grid(
    cut ~ clarity,
    space = "free_x",
    scales = "free_x"
  )

facet
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-xy
#| output-location: column
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = c("$0", "$10,000", "$20,000", "$30,000")
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-y-paste-format
#| output-location: column
#| code-line-numbers: "8,9,10,11,12,13,14"
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = paste0(
      "$", format(
        0:3*10000, 
        big.mark = ",", 
        trim = TRUE
      )
    )
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-y-function
#| output-location: column
#| code-line-numbers: "8,9,10,11,12,13"
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = function(y) paste0(
      "$", format(
        y, big.mark = ",",
        trim = TRUE
      )
    )
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-y-dollar-format
#| output-location: column
#| code-line-numbers: "8"
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = scales::dollar_format()
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-color
#| output-location: column
#| code-line-numbers: "10,11,12,13"
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = scales::dollar_format()
  ) +
  scale_color_brewer(
    palette = "Set2",
    guide = "none"
  )
```

## Diamonds Facet

```{r}
#| label: diamonds-facet-scales-no-legend
#| output-location: column
#| code-line-numbers: "13,14,15"
facet +
  scale_x_continuous(
    breaks = 0:5
  ) +
  scale_y_continuous(
    limits = c(0, 30000),
    breaks = 0:3*10000,
    labels = scales::dollar_format()
  ) +
  scale_color_brewer(
    palette = "Set2"
  ) +
  theme(
    legend.position = "none"
  )
```

# Coordinate Systems(投影)

## Coordinate Systems

<br>

<b class='simple-highlight-grn' style='font-size:2.6rem;'>= interpret the position aesthetics</b><br><br>

::: incremental
-   **linear coordinate systems:** preserve the geometrical shapes
    -   `coord_cartesian()`
    -   `coord_fixed()`
    -   `coord_flip()`
-   **non-linear coordinate systems:** likely change the geometrical shapes
    -   `coord_polar()`
    -   `coord_map()` and `coord_sf()`
    -   `coord_trans()`
:::

## Cartesian Coordinate System

```{r}
#| label: coord-cartesian
#| output-location: column
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  coord_cartesian()
```

## Cartesian Coordinate System

```{r}
#| label: coord-cartesian-zoom
#| output-location: column
#| code-line-numbers: "6,7,8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  coord_cartesian(
    ylim = c(NA, 15000)
  )
```

## Changing Limits

::: {layout-ncol="2"}
```{r}
#| label: coord-cartesian-ylim
#| fig-height: 3.5
#| code-line-numbers: "6,7,8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  coord_cartesian(
    ylim = c(NA, 15000)
  )
```

```{r}
#| label: scale-y-limits
#| fig-height: 3.5
#| code-line-numbers: "6,7,8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  scale_y_continuous(
    limits = c(NA, 15000)
  )
```
:::

## Clipping

```{r}
#| label: coord-clip
#| output-location: column
#| code-line-numbers: "8"
ggplot(
    bikes,
    aes(x = season, y = count)
  ) +
  geom_boxplot() +
  coord_cartesian(
    ylim = c(NA, 15000),
    clip = "off"
  )
```

## Clipping

```{r}
#| label: coord-clip-text
#| output-location: column
#| code-line-numbers: "2,3|6,7,8,9,10|12"
ggplot(
    filter(bikes, is_holiday == TRUE),
    aes(x = temp_feel, y = count)
  ) +
  geom_point() +
  geom_text(
    aes(label = season),
    nudge_x = .3,
    hjust = 0
  ) +
  coord_cartesian(
    clip = "off"
  )
```

## ... or better use {ggrepel}

```{r}
#| label: coord-clip-text-repel
#| output-location: column
#| code-line-numbers: "6"
ggplot(
    filter(bikes, is_holiday == TRUE),
    aes(x = temp_feel, y = count)
  ) +
  geom_point() +
  ggrepel::geom_text_repel(
    aes(label = season),
    nudge_x = .3,
    hjust = 0
  ) +
  coord_cartesian(
    clip = "off"
  )
```

## Remove All Padding

```{r}
#| label: coord-expand-off-clip
#| output-location: column
#| code-line-numbers: "7|8"
ggplot(
    bikes,
    aes(x = temp_feel, y = count)
  ) +
  geom_point() +
  coord_cartesian(
    expand = FALSE,
    clip = "off"
  )
```

## Fixed Coordinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-fixed
#| fig-height: 4.2
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp_feel, y = temp)
  ) +
  geom_point() +
  coord_fixed()
```

::: fragment
```{r}
#| label: coord-fixed-custom
#| fig-height: 4.2
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp_feel, y = temp)
  ) +
  geom_point() +
  coord_fixed(ratio = 4)
```
:::
:::

## Flipped Coordinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-cartesian-comp-flip
#| fig-height: 4.1
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = weather_type)
  ) +
  geom_bar() +
  coord_cartesian()
```

```{r}
#| label: coord-flip
#| fig-height: 4.1
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = weather_type)
  ) +
  geom_bar() +
  coord_flip()
```
:::

## Flipped Coordinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-cartesian-switch-x-y
#| fig-height: 4.1
#| code-line-numbers: "3,6"
ggplot(
    bikes,
    aes(y = weather_type)
  ) +
  geom_bar() +
  coord_cartesian()
```

```{r}
#| label: coord-flip-again
#| fig-height: 4.1
#| code-line-numbers: "3,6"
ggplot(
    bikes,
    aes(x = weather_type)
  ) +
  geom_bar() +
  coord_flip()
```
:::

## Reminder: Sort Your Bars!

```{r}
#| label: forcats-sort-infreq
#| output-location: column
#| code-line-numbers: "3|2"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(y = fct_infreq(weather_type))
  ) +
  geom_bar()
```

## Reminder: Sort Your Bars!

```{r}
#| label: forcats-sort-infreq-rev
#| output-location: column
#| code-line-numbers: "3,4,5"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(y = fct_rev(
      fct_infreq(weather_type)
    ))
  ) +
  geom_bar()
```

## Circular Corrdinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-polar
#| fig-height: 3.9
#| code-line-numbers: "7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = weather_type,
        fill = weather_type)
  ) +
  geom_bar() +
  coord_polar()
```

::: fragment
```{r}
#| label: coord-cartesian-comp-polar
#| fig-height: 3.9
#| code-line-numbers: "7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = weather_type,
        fill = weather_type)
  ) +
  geom_bar() +
  coord_cartesian()
```
:::
:::

## Circular Cordinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-polar-coxcomb
#| fig-height: 3.9
#| code-line-numbers: "6,7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = fct_infreq(weather_type),
        fill = weather_type)
  ) +
  geom_bar(width = 1) +
  coord_polar()
```

```{r}
#| label: coord-cartesian-comp-polar-no-padding
#| fig-height: 3.9
#| code-line-numbers: "6,7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = fct_infreq(weather_type),
        fill = weather_type)
  ) +
  geom_bar(width = 1) +
  coord_cartesian()
```
:::

## Circular Corrdinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-polar-theta-x
#| fig-height: 3.9
#| code-line-numbers: "7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = fct_infreq(weather_type),
        fill = weather_type)
  ) +
  geom_bar() +
  coord_polar(theta = "x")
```

```{r}
#| label: coord-polar-theta-y
#| fig-height: 3.9
#| code-line-numbers: "7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = fct_infreq(weather_type),
        fill = weather_type)
  ) +
  geom_bar() +
  coord_polar(theta = "y")
```
:::

## Circular Corrdinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-polar-pie
#| fig-height: 4.1
#| code-line-numbers: "5"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = 1, fill = weather_type)
  ) +
  geom_bar(position = "stack") +
  coord_polar(theta = "y") 
```

```{r}
#| label: coord-cartesian-comp-polar-stacked
#| fig-height: 4.1
#| code-line-numbers: "5"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = 1, fill = weather_type)
  ) +
  geom_bar(position = "stack") +
  coord_cartesian() 
```
:::

## Circular Corrdinate System

::: {layout-ncol="2"}
```{r}
#| label: coord-polar-pie-sorted
#| fig-height: 3.6
#| code-line-numbers: "4,6,7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = 1,
        fill = fct_rev(fct_infreq(weather_type)))
  ) +
  geom_bar(position = "stack") +
  coord_polar(theta = "y") +
  scale_fill_discrete(name = NULL)
```

```{r}
#| label: coord-cartesian-comp-polar-stacked-sorted
#| fig-height: 3.6
#| code-line-numbers: "4,6,7"
ggplot(
    filter(bikes, !is.na(weather_type)),
    aes(x = 1,
        fill = fct_rev(fct_infreq(weather_type)))
  ) +
  geom_bar(position = "stack") +
  coord_cartesian() +
  scale_fill_discrete(name = NULL)
```
:::

## Transform a Coordinate System

```{r}
#| label: coord-trans-log
#| output-location: column
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp, y = count)
  ) +
  geom_point() +
  coord_trans(y = "log10")
```

## Transform a Coordinate System

::: {layout-ncol="2"}
```{r}
#| label: trans-log-via-coord
#| fig-height: 3.6
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp, y = count,
        group = day_night)
  ) +
  geom_point() +
  geom_smooth(method = "lm") +
  coord_trans(y = "log10")
```

::: fragment
```{r}
#| label: trans-log-via-scale
#| fig-height: 3.6
#| code-line-numbers: "6"
ggplot(
    bikes,
    aes(x = temp, y = count,
        group = day_night)
  ) +
  geom_point() +
  geom_smooth(method = "lm") +
  scale_y_log10()
```
:::
:::


# 图形组合

------------------------------------------------------------------------

![Illustration by [Allison Horst](https://github.com/allisonhorst/stats-illustrations)](../../img/layout/ah_patchwork.jpg){fig-align="center" fig-alt="Allison Horsts monster illustration of the patchwork extension package."}

::: footer
:::

------------------------------------------------------------------------

::: panel-tabset
### Graphic

```{r}
#| label: patchwork-p1
#| fig-width: 10
#| fig-height: 5.8
#| echo: false
theme_std <- theme_set(theme_minimal(base_size = 18))
theme_update(
  # text = element_text(family = "Pally"),
  panel.grid = element_blank(),
  axis.text = element_text(color = "grey50", size = 12),
  axis.title = element_text(color = "grey40", face = "bold"),
  axis.title.x = element_text(margin = margin(t = 12)),
  axis.title.y = element_text(margin = margin(r = 12)),
  axis.line = element_line(color = "grey80", size = .4),
  legend.text = element_text(color = "grey50", size = 12),
  plot.tag = element_text(size = 40, margin = margin(b = 15)),
  plot.background = element_rect(fill = "white", color = "white")
)

bikes_sorted <-
  bikes %>%
  filter(!is.na(weather_type)) %>%
  group_by(weather_type) %>%
  mutate(sum = sum(count)) %>%
  ungroup() %>%
  mutate(
    weather_type = forcats::fct_reorder(
      str_to_title(str_wrap(weather_type, 5)), sum
    )
  )

p1 <- ggplot(
    bikes_sorted,
    aes(x = weather_type, y = count, color = weather_type)
  ) +
  geom_hline(yintercept = 0, color = "grey80", size = .4) +
  stat_summary(
    geom = "point", fun = "sum", size = 12
  ) +
  stat_summary(
    geom = "linerange", ymin = 0, fun.max = function(y) sum(y),
    size = 2, show.legend = FALSE
  ) +
  coord_flip(ylim = c(0, NA), clip = "off") +
  scale_y_continuous(
    expand = c(0, 0), limits = c(0, 8500000),
    labels = scales::comma_format(scale = .0001, suffix = "K")
  ) +
  scale_color_viridis_d(
    option = "magma", direction = -1, begin = .1, end = .9, name = NULL,
    guide = guide_legend(override.aes = list(size = 7))
  ) +
  labs(
    x = NULL, y = "Sum of reported bike shares", tag = "P1",
  ) +
  theme(
    axis.line.y = element_blank(),
    axis.text.y = element_text(family = "Pally", color = "grey50", face = "bold",
                               margin = margin(r = 15), lineheight = .9)
  )

p1
```

### Code

```{r}
#| label: patchwork-p1
#| eval: false
```
:::

------------------------------------------------------------------------

::: panel-tabset
### Graphic

```{r}
#| label: patchwork-p2
#| fig-width: 10
#| fig-height: 5.8
#| echo: false
p2 <- bikes_sorted %>%
  filter(season == "winter", is_weekend == TRUE, day_night == "night") %>%
  group_by(weather_type, .drop = FALSE) %>%
  mutate(id = row_number()) %>%
  ggplot(
      aes(x = weather_type, y = id, color = weather_type)
    ) +
    geom_point(size = 4.5) +
    scale_color_viridis_d(
      option = "magma", direction = -1, begin = .1, end = .9, name = NULL,
      guide = guide_legend(override.aes = list(size = 7))
    ) +
    labs(
      x = NULL, y = "Reported bike shares on\nweekend winter nights", tag = "P2",
    ) +
    coord_cartesian(ylim = c(.5, NA), clip = "off")

p2
```

### Code

```{r}
#| label: patchwork-p2
#| eval: false
```
:::

------------------------------------------------------------------------

::: panel-tabset
### Graphic

```{r}
#| label: patchwork-p3
#| fig-width: 10
#| fig-height: 5.8
#| echo: false
my_colors <- c("#cc0000", "#000080")

p3 <- bikes %>%
  group_by(week = lubridate::week(date), day_night, year) %>%
  summarize(count = sum(count)) %>%
  group_by(week, day_night) %>%
  mutate(avg = mean(count)) %>%
  ggplot(aes(x = week, y = count, group = interaction(day_night, year))) +
    geom_line(color = "grey65", size = 1) +
    geom_line(aes(y = avg, color = day_night), stat = "unique", size = 1.7) +
    annotate(
      geom = "text", label = c("Day", "Night"), color = my_colors,
      x = c(5, 18), y = c(125000, 29000), size = 8, fontface = "bold", family = "Pally"
    ) +
    scale_x_continuous(breaks = c(1, 1:10*5)) +
    scale_y_continuous(labels = scales::comma_format()) +
    scale_color_manual(values = my_colors, guide = "none") +
    labs(
      x = "Week of the Year", y = "Reported bike shares\n(cumulative # per week)", tag = "P3",
    )

p3
```

### Code

```{r}
#| label: patchwork-p3
#| eval: false
```
:::

## {patchwork}

```{r}
#| label: patchwork-composition
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
#| code-line-numbers: "3|2,3"
# install.packages("patchwork")
require(patchwork)
(p1 + p2) / p3
```

## "Collect Guides"

```{r}
#| label: patchwork-composition-guides
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
(p1 + p2) / p3 + plot_layout(guides = "collect")
```

## Apply Theming

```{r}
#| label: patchwork-composition-guides-just
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
((p1 + p2) / p3 & theme(legend.justification = "top")) +
plot_layout(guides = "collect")
```

## Apply Theming

```{r}
#| label: patchwork-composition-legend-off
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
(p1 + p2) / p3 & theme(legend.position = "none",
  plot.background = element_rect(color = "black", size = 3))
```

## Adjust Widths and Heights

```{r}
#| label: patchwork-composition-heights-widths
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
#| code-line-numbers: "2"
((p1 + p2) / p3 & theme(legend.position = "none")) +
  plot_layout(heights = c(.2, .1), widths = c(2, 1))
```

## Use A Custom Layout

```{r}
#| label: patchwork-composition-design
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
#| code-line-numbers: "1,2,3,4|5"
picasso <- "
AAAAAA#BBBB
CCCCCCCCC##
CCCCCCCCC##"
(p1 + p2 + p3 & theme(legend.position = "none")) +
plot_layout(design = picasso)
```

## Add Labels

```{r}
#| label: patchwork-composition-labs-prep
pl1 <- p1 + labs(tag = NULL, title = "Plot One") + theme(legend.position = "none")
pl2 <- p2 + labs(tag = NULL, title = "Plot Two") + theme(legend.position = "none")
pl3 <- p3 + labs(tag = NULL, title = "Plot Three") + theme(legend.position = "none")
```

## Add Labels

```{r}
#| label: patchwork-composition-labs
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
#| code-line-numbers: "2"
(pl1 + pl2) / pl3 +
  plot_annotation(tag_levels = "1",
  tag_prefix = "P",
  title = "An overarching title for all 3 plots, placed on the very top while all other titles are sitting below the tags.")
```

## Add Text

::: panel-tabset
### Graphic

```{r}
#| label: patchwork-composition-textbox-prep
#| echo: false
#| fig-width: 9
#| fig-height: 4.5
#| fig-align: "center"
text <- tibble::tibble(
  x = 0, y = 0, label = "Lorem ipsum dolor sit amet, **consectetur adipiscing elit**, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation <b style='color:#000080;'>ullamco laboris nisi</b> ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat <b style='color:#cc0000;'>cupidatat non proident</b>, sunt in culpa qui officia deserunt mollit anim id est laborum."
)
pt <- ggplot(text, aes(x = x, y = y)) +
  ggtext::geom_textbox(
    aes(label = label),
    box.color = NA, width = unit(23, "lines"),
    color = "grey40", size = 6.5, lineheight = 1.4
  ) +
  coord_cartesian(expand = FALSE, clip = "off") +
  theme_void()
pt
```

### Code

```{r}
#| label: patchwork-composition-textbox-prep
#| eval: false
```
:::

## Add Text

```{r}
#| label: patchwork-composition-textbox
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
(p1 + pt) / p3
```

## Add Inset Plots

```{r}
#| label: patchwork-composition-inset-1
#| fig-width: 12
#| fig-height: 7
#| fig-align: "center"
pl1 + inset_element(pl2,
  l = .6, b = .1, r = 1, t = .6)
```

## Add Inset Plots

```{r}
#| label: patchwork-composition-inset-2
#| fig-width: 12
#| fig-height: 7
#| fig-align: "center"
pl1 + inset_element(pl2,
  l = .6, b = 0, r = 1, t = .5, align_to = 'full')
```

## Add Inset Plots

```{r}
#| label: patchwork-composition-inset-3
#| fig-width: 15
#| fig-height: 12
#| fig-align: "center"
(pl1 + inset_element(pl2,
  l = .6, b = .1, r = 1, t = .6) + pt) / pl3
```


## 练习

```{r}
library(palmerpenguins)
library(ggthemes)
penguins
```

## 效果

```{r}
#| echo: false
#| warning: false
#| fig-width: 8
#| fig-height: 5
penguins |>
  ggplot(aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point(aes(color = species, shape = species)) +
geom_smooth(method = "lm") +
labs(
  title = "Body mass and flipper length",
  subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
  x = "Flipper length (mm)",
  y = "Body mass (g)",
  color = "Species",
  shape = "Species"
) +
scale_color_colorblind()
```


```{r}
#| include: false
#| fig-alt: |
#|   A blank, gray plot area.

ggplot(data = penguins)
```


```{r}
#| include: false
ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
)
```


```{r}
#| include: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. The plot 
#|   displays a positive, linear, and relatively strong relationship between 
#|   these two variables.

ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
  geom_point()
```


```{r}
#| include: false
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. The plot 
#|   displays a positive, fairly linear, and relatively strong relationship 
#|   between these two variables. Species (Adelie, Chinstrap, and Gentoo) 
#|   are represented with different colors.

ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)
) +
  geom_point()
```


```{r}
#| include: false
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. Overlaid 
#|   on the scatterplot are three smooth curves displaying the 
#|   relationship between these variables for each species (Adelie, 
#|   Chinstrap, and Gentoo). Different penguin species are plotted in 
#|   different colors for the points and the smooth curves.

ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)
) +
  geom_point() +
  geom_smooth(method = "lm")
```


```{r}
#| include: false
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. Overlaid 
#|   on the scatterplot is a single line of best fit displaying the 
#|   relationship between these variables for each species (Adelie, 
#|   Chinstrap, and Gentoo). Different penguin species are plotted in 
#|   different colors for the points only.

ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
  geom_point(mapping = aes(color = species)) +
  geom_smooth(method = "lm")
```


```{r}
#| include: false
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. Overlaid 
#|   on the scatterplot is a single line of best fit displaying the 
#|   relationship between these variables for each species (Adelie, 
#|   Chinstrap, and Gentoo). Different penguin species are plotted in 
#|   different colors and shapes for the points only.

ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
  geom_point(mapping = aes(color = species, shape = species)) +
  geom_smooth(method = "lm")
```

## 练习

:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
  geom_point(aes(color = species, shape = species)) +
  geom_smooth(method = "lm") +
  labs(
    title = "Body mass and flipper length",
    subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
    x = "Flipper length (mm)", y = "Body mass (g)",
    color = "Species", shape = "Species"
  ) +
  scale_color_colorblind()
```




### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code


```{r}
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins, colored 
#|   by bill depth. A smooth curve of the relationship between body mass 
#|   and flipper length is overlaid. The relationship is positive, 
#|   fairly linear, and moderately strong.
p <- ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point(aes(color = bill_depth_mm)) +
  geom_smooth()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color = island)
) +
  geom_point() +
  geom_smooth(se = FALSE)
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分层展示

:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(
  data = penguins,
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
  geom_point() +
  geom_smooth()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 柱状图

:::: {.panel-tabset}

### Code

```{r}
#| fig-alt: |
#|   A bar chart of frequencies of species of penguins: Adelie 
#|   (approximately 150), Chinstrap (approximately 90), Gentoo 
#|   (approximately 125).

p <- ggplot(penguins, aes(x = species)) +
  geom_bar()
```
### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 柱状图

:::: {.panel-tabset}

### Code

```{r}
#| fig-alt: |
#|   A bar chart of frequencies of species of penguins, where the bars are 
#|   ordered in decreasing order of their heights (frequencies): Adelie 
#|   (approximately 150), Gentoo (approximately 125), Chinstrap 
#|   (approximately 90).

p <- ggplot(penguins, aes(x = fct_infreq(species))) +
  geom_bar()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::


## 直方图


:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-alt: |
#|   A histogram of body masses of penguins. The distribution is unimodal 
#|   and right skewed, ranging between approximately 2500 to 6500 grams.

p <- ggplot(penguins, aes(x = body_mass_g)) +
  geom_histogram(binwidth = 200)
```


### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 直方图

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| layout-ncol: 2
#| fig-width: 3
#| fig-alt: |
#|   Two histograms of body masses of penguins, one with binwidth of 20 
#|   (left) and one with binwidth of 2000 (right). The histogram with binwidth 
#|   of 20 shows lots of ups and downs in the heights of the bins, creating a 
#|   jagged outline. The histogram  with binwidth of 2000 shows only three bins.

p1 <- ggplot(penguins, aes(x = body_mass_g)) +
  geom_histogram(binwidth = 20)
p2 <- ggplot(penguins, aes(x = body_mass_g)) +
  geom_histogram(binwidth = 2000)
p <- p1 + p2
```


### Graphic

```{r}
#| echo: false
#| fig-width: 10
#| fig-height: 5
p
```

::::

## 密度图

:::: {.panel-tabset}

### Code

```{r}
#| fig-alt: |
#|   A density plot of body masses of penguins. The distribution is unimodal 
#|   and right skewed, ranging between approximately 2500 to 6500 grams.

p <- ggplot(penguins, aes(x = body_mass_g)) +
  geom_density()
```


### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::


## 箱图


:::: {.panel-tabset}

### Code


```{r}
#| warning: false
#| fig-alt: |
#|   Side-by-side box plots of distributions of body masses of Adelie, 
#|   Chinstrap, and Gentoo penguins. The distribution of Adelie and 
#|   Chinstrap penguins' body masses appear to be symmetric with 
#|   medians around 3750 grams. The median body mass of Gentoo penguins 
#|   is much higher, around 5000 grams, and the distribution of the 
#|   body masses of these penguins appears to be somewhat right skewed.

p <- ggplot(penguins,
  aes(x = species, y = body_mass_g)) +
  geom_boxplot()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分组

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-alt: |
#|   A density plot of body masses of penguins by species of penguins. Each 
#|   species (Adelie, Chinstrap, and Gentoo) is represented with different 
#|   colored outlines for the density curves.

p <- ggplot(penguins,
  aes(x = body_mass_g, color = species)) +
  geom_density(linewidth = 0.75)
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分组

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-alt: |
#|   A density plot of body masses of penguins by species of penguins. Each 
#|   species (Adelie, Chinstrap, and Gentoo) is represented in different 
#|   colored outlines for the density curves. The density curves are also 
#|   filled with the same colors, with some transparency added.

p <- ggplot(penguins,
  aes(x = body_mass_g, color = species, fill = species)) +
  geom_density(alpha = 0.5)
```


### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::


## 分组

:::: {.panel-tabset}

### Code

```{r}
#| fig-alt: |
#|   Bar plots of penguin species by island (Biscoe, Dream, and Torgersen)
p <- ggplot(penguins,
  aes(x = island, fill = species)) +
  geom_bar()
```


### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::


## 分组

:::: {.panel-tabset}

### Code

```{r}
#| fig-alt: |
#|   Bar plots of penguin species by island (Biscoe, Dream, and Torgersen)
#|   the bars are scaled to the same height, making it a relative frequencies 
#|   plot

p <- ggplot(penguins,
  aes(x = island, fill = species)) +
  geom_bar(position = "fill")
```


### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分组

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. The plot 
#|   displays a positive, linear, relatively strong relationship between 
#|   these two variables.

p <- ggplot(penguins,
  aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分组

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. The plot 
#|   displays a positive, linear, relatively strong relationship between 
#|   these two variables. The points are colored based on the species of the 
#|   penguins and the shapes of the points represent islands (round points are 
#|   Biscoe island, triangles are Dream island, and squared are Torgersen 
#|   island). The plot is very busy and it's difficult to distinguish the shapes
#|   of the points.

p <- ggplot(penguins,
  aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point(aes(color = species, shape = island))
```
### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::


## 分面

:::: {.panel-tabset}

### Code

```{r}
#| warning: false
#| fig-width: 8
#| fig-asp: 0.33
#| fig-alt: |
#|   A scatterplot of body mass vs. flipper length of penguins. The shapes and 
#|   colors of points represent species. Penguins from each island are on a 
#|   separate facet. Within each facet, the relationship between body mass and 
#|   flipper length is positive, linear, relatively strong. 

p <- ggplot(penguins,
  aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point(aes(color = species, shape = species)) +
  facet_wrap(~island)
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 分面

:::: {.panel-tabset}

### Code

```{r}
#| warning: false

p <- ggplot(
  data = penguins,
  mapping = aes(
    x = bill_length_mm, y = bill_depth_mm, 
    color = species, shape = species
  )
) +
  geom_point() +
  labs(color = "Species")
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code

```{r}
#| layout-ncol: 2

p1 <- ggplot(penguins, aes(x = island, fill = species)) +
  geom_bar(position = "fill")
p2 <- ggplot(penguins, aes(x = species, fill = island)) +
  geom_bar(position = "fill")
p <- p1 + p2
```


### Graphic

```{r}
#| echo: false
#| fig-width: 10
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(penguins,
  aes(x = flipper_length_mm, y = body_mass_g)) +
  geom_point()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习


:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(mpg, aes(x = class)) +
geom_bar()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code


```{r}
p <- ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 练习

:::: {.panel-tabset}

### Code

```{r}
p <- ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```

### Graphic

```{r}
#| echo: false
#| fig-width: 8
#| fig-height: 5
p
```

::::

## 欢迎讨论!{.center}


`r rmdify::slideend(wechat = FALSE, type = "public", tel = FALSE, thislink = "https://drc.drwater.net/course/public/RWEP/PUB/SD/")`