[1] 10
-[1] 0.0123
-[1] 3.141593
-diff --git a/.source_state b/.source_state index f115b0b..d2a74c4 100644 --- a/.source_state +++ b/.source_state @@ -1 +1 @@ -75ab32db1cd9222c3a3f959c30cd2363 +8a3f81986b4932245c23eee5be50040b diff --git a/SD/1_model/index.qmd b/SD/1_model/index.qmd index 091b6d1..7f33daa 100644 --- a/SD/1_model/index.qmd +++ b/SD/1_model/index.qmd @@ -197,16 +197,19 @@ taxi #| set.seed(123) library(forcats) -one_split <- slice(taxi, 1:30) %>% - initial_split() %>% - tidy() %>% - add_row(Row = 1:30, Data = "Original") %>% - mutate(Data = case_when( +require(tidymodels) +require(tidyverse) +one_split <- taxi |> + dplyr::slice(1:30) |> + rsample::initial_split() |> + generics::tidy() |> + tibble::add_row(Row = 1:30, Data = "Original") |> + dplyr::mutate(Data = case_when( Data == "Analysis" ~ "Training", Data == "Assessment" ~ "Testing", TRUE ~ Data - )) %>% - mutate(Data = factor(Data, levels = c("Original", "Training", "Testing"))) + )) |> + dplyr::mutate(Data = factor(Data, levels = c("Original", "Training", "Testing"))) all_split <- ggplot(one_split, aes(x = Row, y = fct_rev(Data), fill = Data)) + geom_tile(color = "white", diff --git a/SD/2_R语言语法基础/index.html b/SD/2_R语言语法基础/index.html deleted file mode 100644 index d9ef8b8..0000000 --- a/SD/2_R语言语法基础/index.html +++ /dev/null @@ -1,1799 +0,0 @@ - -
- - - - - - - - - - - -《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution
2025-03-17
-R中的数值型数据可以是整数或浮点数。
- -在 R 中,Inf
代表正无穷大(positive infinity),而 -Inf
则代表负无穷大(negative infinity)。这些值通常出现在数学计算中,例如除以零或对负数取对数等操作可能会导致无穷大的结果。
在 R 中,可以使用 <-
或 =
运算符将值赋给变量,建议用<-
。
abs(x)
: 返回 x
的绝对值sqrt(x)
: 返回 x
的平方根exp(x)
: 以e为底的指数函数值log(x, base)
: 以指定底数的对数函数的值,默认底数为elog10(x)
: 10为底的对数值log2(x)
: 2为底的对数值floor(x)
: 不大于x
的最大整数ceiling(x)
: 不小于x
的最小整数sin(x)
, cos(x)
, tan(x)
: 返回 x
的正弦、余弦和正切值,其中 x
为弧度asin(x)
, acos(x)
, atan(x)
: x
的反正弦、反余弦和反正切值,返回弧度sinh(x)
, cosh(x)
, tanh(x)
: 返回 x
的双曲正弦、双曲余弦和双曲正切值asinh(x)
, acosh(x)
, atanh(x)
: 反双曲正弦、反双曲余弦和反双曲正切值round(x, digits)
: x
四舍五入,digits
指定小数点后位数trunc(x)
: 返回x
截断值,即去掉小数部分sign(x)
: 返回符号要求:使用R语言编写函数,输入参数为数据集合 x,输出为以上指标的值。
-使用 function
关键字定义函数,并使用 return
关键字返回结果。
向量是一维数组,可以包含相同类型的元素。
- -列表可以包含不同类型的元素。
- -要求:使用R语言编写函数,输入参数为 a 和 b,输出为上述结果。
-[1] FALSE
-[1] TRUE
-[1] FALSE
-[1] TRUE
-[1] 1
-[1] 0
-[1] FALSE
-[1] TRUE
-which
identical
paste
base
packagelubridate
package[1] "2025-03-17"
-[1] "2025-03-17 19:40:31 CST"
-[1] "2020-03-21" "2024-04-04" "2018-12-31"
-[1] "1998-03-10" "2018-01-17" "2024-02-03"
-[1] "1998-03-16 13:15:45 CST"
-lubridate
packagelubridate
packagelubridate
package[1] "2025-03-17 19:40:31 CST"
-[1] "2025-03-17 CST"
-[1] "2025-03-17 19:00:00 CST"
-[1] "2025-03-17 19:40:00 CST"
-[1] "2025-03-17 19:50:00 CST"
-# 创建一个Factor
-gender <- factor(c("Male", "Female", "Female", "Male"))
-# 查看Factor的水平
-levels(gender)
[1] "Female" "Male"
-# 改变Factor的水平顺序
-gender <- factor(gender, levels = c("Female", "Male"))
-summary(gender) # 使用Factor进行分组
Female Male
- 2 2
-[1] 2 1 1 2
-[1] "Male" "Female" "Female" "Male"
- [1] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
- [1] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-Levels: Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
- [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- [,1] [,2] [,3] [,4] [,5]
-[1,] 1 2 3 4 5
-[2,] 6 7 8 9 10
-[3,] 11 12 13 14 15
-[4,] 16 17 18 19 20
- [,1] [,2] [,3] [,4] [,5]
-[1,] 1 5 9 13 17
-[2,] 2 6 10 14 18
-[3,] 3 7 11 15 19
-[4,] 4 8 12 16 20
-[1] 4
-[1] 5
-cbind
、rbind
[,1] [,2] [,3] [,4] [,5] [,6]
-[1,] 1 7 2 8 3 9
-[2,] 4 10 5 11 6 12
- [,1] [,2]
-[1,] 1 7
-[2,] 4 10
-[3,] 2 8
-[4,] 5 11
-[5,] 3 9
-[6,] 6 12
- [,1] [,2] [,3]
-[1,] 1 3 5
-[2,] 2 4 6
-最主要的数据形式。
- -《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution
2025-03-17
-tidyverse
风格数据分析总体流程# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 16
- dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
- <int> <int> <dbl> <int> <int> <dbl> <chr>
- 1 517 515 2 830 819 11 UA
- 2 533 529 4 850 830 20 UA
- 3 542 540 2 923 850 33 AA
- 4 544 545 -1 1004 1022 -18 B6
- 5 554 600 -6 812 837 -25 DL
- 6 554 558 -4 740 728 12 UA
- 7 555 600 -5 913 854 19 B6
- 8 557 600 -3 709 723 -14 EV
- 9 557 600 -3 838 846 -8 B6
-10 558 600 -2 753 745 8 AA
-# ℹ 336,766 more rows
-# ℹ 9 more variables: flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
-# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 16
- dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
- <int> <int> <dbl> <int> <int> <dbl> <chr>
- 1 517 515 2 830 819 11 UA
- 2 533 529 4 850 830 20 UA
- 3 542 540 2 923 850 33 AA
- 4 544 545 -1 1004 1022 -18 B6
- 5 554 600 -6 812 837 -25 DL
- 6 554 558 -4 740 728 12 UA
- 7 555 600 -5 913 854 19 B6
- 8 557 600 -3 709 723 -14 EV
- 9 557 600 -3 838 846 -8 B6
-10 558 600 -2 753 745 8 AA
-# ℹ 336,766 more rows
-# ℹ 9 more variables: flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
-# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 4
- carrier tailnum origin dest
- <chr> <chr> <chr> <chr>
- 1 UA N14228 EWR IAH
- 2 UA N24211 LGA IAH
- 3 AA N619AA JFK MIA
- 4 B6 N804JB JFK BQN
- 5 DL N668DN LGA ATL
- 6 UA N39463 EWR ORD
- 7 B6 N516JB EWR FLL
- 8 EV N829AS LGA IAD
- 9 B6 N593JB JFK MCO
-10 AA N3ALAA LGA ORD
-# ℹ 336,766 more rows
-# A tibble: 336,776 × 8
- dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay air_time
- <int> <int> <dbl> <int> <int> <dbl> <dbl>
- 1 517 515 2 830 819 11 227
- 2 533 529 4 850 830 20 227
- 3 542 540 2 923 850 33 160
- 4 544 545 -1 1004 1022 -18 183
- 5 554 600 -6 812 837 -25 116
- 6 554 558 -4 740 728 12 150
- 7 555 600 -5 913 854 19 158
- 8 557 600 -3 709 723 -14 53
- 9 557 600 -3 838 846 -8 140
-10 558 600 -2 753 745 8 138
-# ℹ 336,766 more rows
-# ℹ 1 more variable: time_hour <dttm>
-# A tibble: 336,776 × 19
- air_time year month day dep_time sched_dep_time dep_delay arr_time
- <dbl> <int> <int> <int> <int> <int> <dbl> <int>
- 1 227 2013 1 1 517 515 2 830
- 2 227 2013 1 1 533 529 4 850
- 3 160 2013 1 1 542 540 2 923
- 4 183 2013 1 1 544 545 -1 1004
- 5 116 2013 1 1 554 600 -6 812
- 6 150 2013 1 1 554 558 -4 740
- 7 158 2013 1 1 555 600 -5 913
- 8 53 2013 1 1 557 600 -3 709
- 9 140 2013 1 1 557 600 -3 838
-10 138 2013 1 1 558 600 -2 753
-# ℹ 336,766 more rows
-# ℹ 11 more variables: sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
-# flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tail_num <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- 年份 月份 day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 3 × 4
- year month day dep_time
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-# A tibble: 3 × 4
- c1 c2 c3 c4
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-# A tibble: 3 × 4
- year month day dep_time
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-# A tibble: 3 × 4
- YEAR MONTH DAY DEP_TIME
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-# A tibble: 3 × 4
- year month day dep_time
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-# A tibble: 3 × 4
- YEAR_NEW MONTH_NEW DAY_NEW DEP_TIME_NEW
- <int> <int> <int> <int>
-1 2013 1 1 517
-2 2013 1 1 533
-3 2013 1 1 542
-将含有下划线的列名中的下划线去掉。
- -将airqualitydf
中列名的单位信息去除(前5列)。
airqualitydf <- readxl::read_xlsx("../../data/airquality.xlsx", sheet = 2)
-airqualitydf |> select(1:5)
# A tibble: 20,088 × 5
- datetime site `CO_mg/m3` `CO_24h_mg/m3` `NO2_μg/m3`
- <dttm> <chr> <dbl> <dbl> <dbl>
- 1 2024-03-19 01:00:00 1001A 0.1 0.4 5
- 2 2024-03-19 01:00:00 1003A 0.2 0.4 9
- 3 2024-03-19 01:00:00 1004A 0.2 0.4 4
- 4 2024-03-19 01:00:00 1005A 0.1 0.3 6
- 5 2024-03-19 01:00:00 1006A 0.1 0.4 5
- 6 2024-03-19 01:00:00 1007A 0.3 0.5 6
- 7 2024-03-19 01:00:00 1008A 0.2 0.4 2
- 8 2024-03-19 01:00:00 1009A 0.2 0.4 2
- 9 2024-03-19 01:00:00 1010A 0.1 0.3 2
-10 2024-03-19 01:00:00 1011A 0.2 0.4 12
-# ℹ 20,078 more rows
-filter
# A tibble: 9,723 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 848 1835 853 1001 1950
- 2 2013 1 1 957 733 144 1056 853
- 3 2013 1 1 1114 900 134 1447 1222
- 4 2013 1 1 1540 1338 122 2020 1825
- 5 2013 1 1 1815 1325 290 2120 1542
- 6 2013 1 1 1842 1422 260 1958 1535
- 7 2013 1 1 1856 1645 131 2212 2005
- 8 2013 1 1 1934 1725 129 2126 1855
- 9 2013 1 1 1938 1703 155 2109 1823
-10 2013 1 1 1942 1705 157 2124 1830
-# ℹ 9,713 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-Flights that departed on January 1.
-# A tibble: 842 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 832 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-Select flights that departed in January or February
-# A tibble: 51,955 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 51,945 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 9 641 900 1301 1242 1530
- 2 2013 6 15 1432 1935 1137 1607 2120
- 3 2013 1 10 1121 1635 1126 1239 1810
- 4 2013 9 20 1139 1845 1014 1457 2210
- 5 2013 7 22 845 1600 1005 1044 1815
- 6 2013 4 10 1100 1900 960 1342 2211
- 7 2013 3 17 2321 810 911 135 1020
- 8 2013 6 27 959 1900 899 1236 2226
- 9 2013 7 22 2257 759 898 121 1026
-10 2013 12 5 756 1700 896 1058 2020
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 5 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
-1 2013 1 1 517 515 2 830 819
-2 2013 1 1 533 529 4 850 830
-3 2013 1 1 542 540 2 923 850
-4 2013 1 1 544 545 -1 1004 1022
-5 2013 1 1 554 600 -6 812 837
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 5 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
-1 2013 1 1 517 515 2 830 819
-2 2013 1 1 533 529 4 850 830
-3 2013 1 1 542 540 2 923 850
-4 2013 1 1 544 545 -1 1004 1022
-5 2013 1 1 554 600 -6 812 837
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 5 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
-1 2013 1 9 641 900 1301 1242 1530
-2 2013 6 15 1432 1935 1137 1607 2120
-3 2013 1 10 1121 1635 1126 1239 1810
-4 2013 9 20 1139 1845 1014 1457 2210
-5 2013 7 22 845 1600 1005 1044 1815
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 2,257 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 12 7 2040 2123 -43 40 2352
- 2 2013 2 3 2022 2055 -33 2240 2338
- 3 2013 11 10 1408 1440 -32 1549 1559
- 4 2013 1 11 1900 1930 -30 2233 2243
- 5 2013 1 29 1703 1730 -27 1947 1957
- 6 2013 8 9 729 755 -26 1002 955
- 7 2013 10 23 1907 1932 -25 2143 2143
- 8 2013 3 30 2030 2055 -25 2213 2250
- 9 2013 3 2 1431 1455 -24 1601 1631
-10 2013 5 5 934 958 -24 1225 1309
-# ℹ 2,247 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-根据origin
、dest
、air_time
倒序排序。
# A tibble: 336,776 × 19
- origin dest air_time year month day dep_time sched_dep_time dep_delay
- <chr> <chr> <dbl> <int> <int> <int> <int> <int> <dbl>
- 1 EWR ALB 50 2013 5 5 1950 2000 -10
- 2 EWR ALB 45 2013 1 13 1721 1619 62
- 3 EWR ALB 43 2013 1 20 1623 1619 4
- 4 EWR ALB 42 2013 4 1 1439 1340 59
- 5 EWR ALB 41 2013 12 4 1316 1310 6
- 6 EWR ALB 41 2013 2 1 2034 2000 34
- 7 EWR ALB 41 2013 5 7 1956 2000 -4
- 8 EWR ALB 38 2013 1 18 1824 1619 125
- 9 EWR ALB 38 2013 1 28 1636 1619 17
-10 EWR ALB 38 2013 11 10 2149 2159 -10
-# ℹ 336,766 more rows
-# ℹ 10 more variables: arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
-# carrier <chr>, flight <int>, tailnum <chr>, distance <dbl>, hour <dbl>,
-# minute <dbl>, time_hour <dttm>
-# A tibble: 336,776 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 336,766 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-# A tibble: 224 × 19
- year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
- <int> <int> <int> <int> <int> <dbl> <int> <int>
- 1 2013 1 1 517 515 2 830 819
- 2 2013 1 1 533 529 4 850 830
- 3 2013 1 1 542 540 2 923 850
- 4 2013 1 1 544 545 -1 1004 1022
- 5 2013 1 1 554 600 -6 812 837
- 6 2013 1 1 554 558 -4 740 728
- 7 2013 1 1 555 600 -5 913 854
- 8 2013 1 1 557 600 -3 709 723
- 9 2013 1 1 557 600 -3 838 846
-10 2013 1 1 558 600 -2 753 745
-# ℹ 214 more rows
-# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
-# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
-# hour <dbl>, minute <dbl>, time_hour <dttm>
-《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution
2025-03-17
-name,age,score
-Alice,25,85
-Bob,30,92
-Charlie,28,89
-David,22,95
-Eva,35,87
-Frank,27,91
-Grace,29,88
-Helen,26,93
-Ivan,31,86
-Jack,24,94
-Kelly,32,89
-Lily,28,90
-Mike,33,85
-Nancy,27,92
-Olivia,34,88
-Peter,29,93
-Queen,25,89
-Ryan,30,94
-Samantha,26,91
-Tom,31,87
-
-《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution
2025-03-17
-airqualitydf.xlsx
,按采样点统计白天(8:00-20:00)与夜晚(20:00-8:00)中空气质量指数(AQI)中位数,按城市统计低于所有采样点AQI30%分位值的采样点占比,列出上述占比最高的10个城市(不考虑采样点数低于5个的城市)。作业模板:第8次课后作业_模板.qmd
-