This commit is contained in:
Ming Su 2025-03-17 19:20:50 +08:00
parent 1532a8982d
commit 2db87d5e89
13 changed files with 803 additions and 1 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

398
coding/Untitled.qmd Normal file
View File

@ -0,0 +1,398 @@
---
title: "第10次课"
editor: visual
---
```{r}
require(tidymodels)
taxi
set.seed(123)
taxi_split <- initial_split(taxi, prop = 0.8)
taxi_train <- training(taxi_split)
taxi_test <- testing(taxi_split)
nrow(taxi_train)
```
```{r}
tree_spec <-
decision_tree(cost_complexity = 0.002) %>%
set_mode("classification")
tree_fit <-
workflow(tip ~ ., tree_spec) %>%
fit(data = taxi_train)
taxi_test |>
bind_cols(
predict(tree_fit, new_data = taxi_test))
```
```{r}
require(magrittr)
# %>%: magrittr
# |>: base
taxi_folds <- vfold_cv(taxi_train, v = 5)
tree_spec <-
decision_tree(cost_complexity = 0.002) |>
set_mode("classification")
taxi_wflow <- workflow() |>
add_formula(tip ~ .) |>
add_model(tree_spec)
taxi_res <- fit_resamples(taxi_wflow, taxi_folds)
taxi_res
taxi_metrics <- taxi_res |>
collect_metrics()
# Save the assessment set results
ctrl_taxi <- control_resamples(save_pred = TRUE)
taxi_res <- fit_resamples(taxi_wflow, taxi_folds, control = ctrl_taxi)
taxi_res |>
collect_predictions()
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
taxi_preds |>
group_by(id) |>
taxi_metrics(truth = tip, estimate = .pred_class)
```
## 数据
```{r}
require(tidyverse)
sitedf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-01/nla2007_sampledlakeinformation_20091113.csv") |>
select(SITE_ID,
lon = LON_DD,
lat = LAT_DD,
name = LAKENAME,
area = LAKEAREA,
zmax = DEPTHMAX
) |>
group_by(SITE_ID) |>
summarize(lon = mean(lon, na.rm = TRUE),
lat = mean(lat, na.rm = TRUE),
name = unique(name),
area = mean(area, na.rm = TRUE),
zmax = mean(zmax, na.rm = TRUE))
visitdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
select(SITE_ID,
date = DATE_PROFILE,
year = YEAR,
visit = VISIT_NO
) |>
distinct()
waterchemdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
select(SITE_ID,
date = DATE_PROFILE,
depth = DEPTH,
temp = TEMP_FIELD,
do = DO_FIELD,
ph = PH_FIELD,
cond = COND_FIELD,
)
sddf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_secchi_20091008.csv") |>
select(SITE_ID,
date = DATE_SECCHI,
sd = SECMEAN,
clear_to_bottom = CLEAR_TO_BOTTOM
)
trophicdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_trophic_conditionestimate_20091123.csv") |>
select(SITE_ID,
visit = VISIT_NO,
tp = PTL,
tn = NTL,
chla = CHLA) |>
left_join(visitdf, by = c("SITE_ID", "visit")) |>
select(-year, -visit) |>
group_by(SITE_ID, date) |>
summarize(tp = mean(tp, na.rm = TRUE),
tn = mean(tn, na.rm = TRUE),
chla = mean(chla, na.rm = TRUE)
)
phytodf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_phytoplankton_softalgaecount_20091023.csv") |>
select(SITE_ID,
date = DATEPHYT,
depth = SAMPLE_DEPTH,
phyta = DIVISION,
genus = GENUS,
species = SPECIES,
tax = TAXANAME,
abund = ABUND) |>
mutate(phyta = gsub(" .*$", "", phyta)) |>
filter(!is.na(genus)) |>
group_by(SITE_ID, date, depth, phyta, genus) |>
summarize(abund = sum(abund, na.rm = TRUE)) |>
nest(phytodf = -c(SITE_ID, date))
envdf <- waterchemdf |>
filter(depth < 2) |>
select(-depth) |>
group_by(SITE_ID, date) |>
summarise_all(~mean(., na.rm = TRUE)) |>
ungroup() |>
left_join(sddf, by = c("SITE_ID", "date")) |>
left_join(trophicdf, by = c("SITE_ID", "date"))
nla <- envdf |>
left_join(phytodf) |>
left_join(sitedf, by = "SITE_ID") |>
filter(!purrr::map_lgl(phytodf, is.null)) |>
mutate(cyanophyta = purrr::map(phytodf, ~ .x |>
dplyr::filter(phyta == "Cyanophyta") |>
summarize(cyanophyta = sum(abund, na.rm = TRUE))
)) |>
unnest(cyanophyta) |>
select(-phyta) |>
mutate(clear_to_bottom = ifelse(is.na(clear_to_bottom), TRUE, FALSE))
# library(rmdify)
# library(dwfun)
# dwfun::init()
```
```{r}
skimr::skim(nla)
```
```{r}
nla |>
filter(tp > 1) |>
ggplot(aes(tn, tp)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x)))
m1 <- lm(log10(tp) ~ log10(tn), data = nla)
summary(m1)
```
```{r}
nla |>
filter(tp > 1) |>
ggplot(aes(tp, cyanophyta)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x)))
m2 <- lm(log10(cyanophyta) ~ log10(tp), data = nla)
summary(m2)
m3 <- glm(log10(cyanophyta) ~ log10(tp), data = nla)
summary(m3)
require(mgcv)
# 广义加性模型 General additive model
m4 <- gam(log10(cyanophyta) ~ s(log10(tp)) + s(log10(tn)) + s(log10(chla)), data = nla)
plot(m4)
summary(m4)
```
```{r}
nla_split <- initial_split(nla, prop = 0.7, strata = zmax)
nla_train <- training(nla_split)
nla_test <- testing(nla_split)
```
```{r}
# xgboost, cyanophyta
nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn + chla + clear_to_bottom")
# nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn")
nla_recipe <- recipes::recipe(nla_formula, data = nla_train) |>
recipes::step_string2factor(all_nominal()) |>
recipes::step_nzv(all_nominal()) |>
recipes::step_log(chla, cyanophyta, tn, tp, base = 10) |>
recipes::step_normalize(all_numeric_predictors()) |>
prep()
nla_recipe
```
```{r}
nla_cv <- recipes::bake(
nla_recipe,
new_data = training(nla_split)
) |>
rsample::vfold_cv(v = 10)
nla_cv
```
```{r}
xgboost_model <- parsnip::boost_tree(
mode = "regression",
trees = 1000,
min_n = tune(),
tree_depth = tune(),
learn_rate = tune(),
loss_reduction = tune()
) |>
set_engine("xgboost", objective = "reg:squarederror")
xgboost_model
```
```{r}
# grid specification
xgboost_params <- dials::parameters(
min_n(),
tree_depth(),
learn_rate(),
loss_reduction()
)
xgboost_params
```
```{r}
xgboost_grid <- dials::grid_max_entropy(
xgboost_params,
size = 60
)
knitr::kable(head(xgboost_grid))
```
```{r}
xgboost_wf <- workflows::workflow() |>
add_model(xgboost_model) |>
add_formula(nla_formula)
xgboost_wf
```
```{r}
# hyperparameter tuning
if (FALSE) {
xgboost_tuned <- tune::tune_grid(
object = xgboost_wf,
resamples = nla_cv,
grid = xgboost_grid,
metrics = yardstick::metric_set(rmse, rsq, mae),
control = tune::control_grid(verbose = TRUE)
)
saveRDS(xgboost_tuned, "./xgboost_tuned.RDS")
}
xgboost_tuned <- readRDS("./xgboost_tuned.RDS")
```
```{r}
xgboost_tuned |>
tune::show_best(metric = "rmse") |>
knitr::kable()
```
```{r}
xgboost_tuned |>
collect_metrics()
```
```{r}
xgboost_tuned |>
autoplot()
```
```{r}
xgboost_best_params <- xgboost_tuned |>
tune::select_best("rmse")
knitr::kable(xgboost_best_params)
```
```{r}
xgboost_model_final <- xgboost_model |>
finalize_model(xgboost_best_params)
xgboost_model_final
```
```{r}
(train_processed <- bake(nla_recipe, new_data = nla_train))
```
```{r}
train_prediction <- xgboost_model_final |>
# fit the model on all the training data
fit(
formula = nla_formula,
data = train_processed
) |>
# predict the sale prices for the training data
predict(new_data = train_processed) |>
bind_cols(nla_train |>
mutate(.obs = log10(cyanophyta)))
xgboost_score_train <-
train_prediction |>
yardstick::metrics(.obs, .pred) |>
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
knitr::kable(xgboost_score_train)
```
```{r}
train_prediction |>
ggplot(aes(.pred, .obs)) +
geom_point() +
geom_smooth(method = "lm")
```
```{r}
test_processed <- bake(nla_recipe, new_data = nla_test)
test_prediction <- xgboost_model_final |>
# fit the model on all the training data
fit(
formula = nla_formula,
data = train_processed
) |>
# use the training model fit to predict the test data
predict(new_data = test_processed) |>
bind_cols(nla_test |>
mutate(.obs = log10(cyanophyta)))
# measure the accuracy of our model using `yardstick`
xgboost_score <- test_prediction |>
yardstick::metrics(.obs, .pred) |>
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
knitr::kable(xgboost_score)
```
```{r}
cyanophyta_prediction_residual <- test_prediction |>
arrange(.pred) %>%
mutate(residual_pct = (.obs - .pred) / .pred) |>
select(.pred, residual_pct)
cyanophyta_prediction_residual |>
ggplot(aes(x = .pred, y = residual_pct)) +
geom_point() +
xlab("Predicted Cyanophyta") +
ylab("Residual (%)")
```
```{r}
test_prediction |>
ggplot(aes(.pred, .obs)) +
geom_point() +
geom_smooth(method = "lm", colour = "black")
```

401
coding/lesson10.qmd Normal file
View File

@ -0,0 +1,401 @@
---
title: "第10次课"
editor: visual
---
```{r}
require(tidymodels)
taxi
set.seed(123)
taxi_split <- initial_split(taxi, prop = 0.8)
taxi_train <- training(taxi_split)
taxi_test <- testing(taxi_split)
nrow(taxi_train)
```
```{r}
tree_spec <-
decision_tree(cost_complexity = 0.002) %>%
set_mode("classification")
tree_fit <-
workflow(tip ~ ., tree_spec) %>%
fit(data = taxi_train)
taxi_test |>
bind_cols(
predict(tree_fit, new_data = taxi_test))
```
```{r}
require(magrittr)
# %>%: magrittr
# |>: base
taxi_folds <- vfold_cv(taxi_train, v = 5)
tree_spec <-
decision_tree(cost_complexity = 0.002) |>
set_mode("classification")
taxi_wflow <- workflow() |>
add_formula(tip ~ .) |>
add_model(tree_spec)
taxi_res <- fit_resamples(taxi_wflow, taxi_folds)
taxi_res
taxi_metrics <- taxi_res |>
collect_metrics()
# Save the assessment set results
ctrl_taxi <- control_resamples(save_pred = TRUE)
taxi_res <- fit_resamples(taxi_wflow, taxi_folds, control = ctrl_taxi)
taxi_res |>
collect_predictions()
taxi_metrics <- metric_set(accuracy, specificity, sensitivity)
taxi_preds |>
group_by(id) |>
taxi_metrics(truth = tip, estimate = .pred_class)
```
## 数据
```{r}
require(tidyverse)
sitedf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-01/nla2007_sampledlakeinformation_20091113.csv") |>
select(SITE_ID,
lon = LON_DD,
lat = LAT_DD,
name = LAKENAME,
area = LAKEAREA,
zmax = DEPTHMAX
) |>
group_by(SITE_ID) |>
summarize(lon = mean(lon, na.rm = TRUE),
lat = mean(lat, na.rm = TRUE),
name = unique(name),
area = mean(area, na.rm = TRUE),
zmax = mean(zmax, na.rm = TRUE))
visitdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
select(SITE_ID,
date = DATE_PROFILE,
year = YEAR,
visit = VISIT_NO
) |>
distinct()
waterchemdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2013-09/nla2007_profile_20091008.csv") |>
select(SITE_ID,
date = DATE_PROFILE,
depth = DEPTH,
temp = TEMP_FIELD,
do = DO_FIELD,
ph = PH_FIELD,
cond = COND_FIELD,
)
sddf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_secchi_20091008.csv") |>
select(SITE_ID,
date = DATE_SECCHI,
sd = SECMEAN,
clear_to_bottom = CLEAR_TO_BOTTOM
)
trophicdf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_trophic_conditionestimate_20091123.csv") |>
select(SITE_ID,
visit = VISIT_NO,
tp = PTL,
tn = NTL,
chla = CHLA) |>
left_join(visitdf, by = c("SITE_ID", "visit")) |>
select(-year, -visit) |>
group_by(SITE_ID, date) |>
summarize(tp = mean(tp, na.rm = TRUE),
tn = mean(tn, na.rm = TRUE),
chla = mean(chla, na.rm = TRUE)
)
phytodf <- readr::read_csv("https://www.epa.gov/sites/default/files/2014-10/nla2007_phytoplankton_softalgaecount_20091023.csv") |>
select(SITE_ID,
date = DATEPHYT,
depth = SAMPLE_DEPTH,
phyta = DIVISION,
genus = GENUS,
species = SPECIES,
tax = TAXANAME,
abund = ABUND) |>
mutate(phyta = gsub(" .*$", "", phyta)) |>
filter(!is.na(genus)) |>
group_by(SITE_ID, date, depth, phyta, genus) |>
summarize(abund = sum(abund, na.rm = TRUE)) |>
nest(phytodf = -c(SITE_ID, date))
envdf <- waterchemdf |>
filter(depth < 2) |>
select(-depth) |>
group_by(SITE_ID, date) |>
summarise_all(~mean(., na.rm = TRUE)) |>
ungroup() |>
left_join(sddf, by = c("SITE_ID", "date")) |>
left_join(trophicdf, by = c("SITE_ID", "date"))
nla <- envdf |>
left_join(phytodf) |>
left_join(sitedf, by = "SITE_ID") |>
filter(!purrr::map_lgl(phytodf, is.null)) |>
mutate(cyanophyta = purrr::map(phytodf, ~ .x |>
dplyr::filter(phyta == "Cyanophyta") |>
summarize(cyanophyta = sum(abund, na.rm = TRUE))
)) |>
unnest(cyanophyta) |>
select(-phyta) |>
mutate(clear_to_bottom = ifelse(is.na(clear_to_bottom), TRUE, FALSE))
# library(rmdify)
# library(dwfun)
# dwfun::init()
```
```{r}
skimr::skim(nla)
```
```{r}
nla |>
filter(tp > 1) |>
ggplot(aes(tn, tp)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x)))
m1 <- lm(log10(tp) ~ log10(tn), data = nla)
summary(m1)
```
```{r}
nla |>
filter(tp > 1) |>
ggplot(aes(tp, cyanophyta)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))) +
scale_y_log10(breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x)))
m2 <- lm(log10(cyanophyta) ~ log10(tp), data = nla)
summary(m2)
m3 <- glm(log10(cyanophyta) ~ log10(tp), data = nla)
summary(m3)
require(mgcv)
# 广义加性模型 General additive model
m4 <- gam(log10(cyanophyta) ~ s(log10(tp)) + s(log10(tn)) + s(log10(chla)), data = nla)
plot(m4)
summary(m4)
```
```{r}
nla_split <- initial_split(nla, prop = 0.7, strata = zmax)
nla_train <- training(nla_split)
nla_test <- testing(nla_split)
```
```{r}
# xgboost, cyanophyta
nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn + chla + clear_to_bottom")
# nla_formula <- as.formula("cyanophyta ~ temp + do + ph + cond + sd + tp + tn")
nla_recipe <- recipes::recipe(nla_formula, data = nla_train) |>
recipes::step_string2factor(all_nominal()) |>
recipes::step_nzv(all_nominal()) |>
recipes::step_log(chla, cyanophyta, tn, tp, base = 10) |>
recipes::step_normalize(all_numeric_predictors()) |>
prep()
nla_recipe
```
```{r}
nla_cv <- recipes::bake(
nla_recipe,
new_data = nla_train
) |>
rsample::vfold_cv(v = 10)
nla_cv
```
```{r}
xgboost_model <- parsnip::boost_tree(
mode = "regression",
trees = 1000,
min_n = tune(),
tree_depth = tune(),
learn_rate = tune(),
loss_reduction = tune()
) |>
set_engine("xgboost", objective = "reg:squarederror")
xgboost_model
```
```{r}
# grid specification
xgboost_params <- dials::parameters(
min_n(),
tree_depth(),
learn_rate(),
loss_reduction()
)
xgboost_params
```
```{r}
xgboost_grid <- dials::grid_max_entropy(
xgboost_params,
size = 60
)
knitr::kable(head(xgboost_grid))
```
```{r}
xgboost_wf <- workflows::workflow() |>
add_model(xgboost_model) |>
add_formula(nla_formula)
xgboost_wf
```
```{r}
install.packages("xgboost")
# hyperparameter tuning
if (FALSE) {
xgboost_tuned <- tune::tune_grid(
object = xgboost_wf,
resamples = nla_cv,
grid = xgboost_grid,
metrics = yardstick::metric_set(rmse, rsq, mae),
control = tune::control_grid(verbose = TRUE)
)
saveRDS(xgboost_tuned, "./xgboost_tuned.RDS")
}
xgboost_tuned <- readRDS("./xgboost_tuned.RDS")
```
```{r}
xgboost_tuned |>
tune::show_best(metric = "rmse") |>
knitr::kable()
```
```{r}
xgboost_tuned |>
collect_metrics()
```
```{r}
xgboost_tuned |>
autoplot()
```
```{r}
xgboost_best_params <- xgboost_tuned |>
tune::select_best("rmse")
knitr::kable(xgboost_best_params)
```
```{r}
xgboost_model_final <- xgboost_model |>
finalize_model(xgboost_best_params)
xgboost_model_final
```
```{r}
(train_processed <- bake(nla_recipe, new_data = nla_train))
```
```{r}
train_prediction <- xgboost_model_final |>
# fit the model on all the training data
fit(
formula = nla_formula,
data = train_processed
) |>
# predict the sale prices for the training data
predict(new_data = train_processed) |>
bind_cols(nla_train |>
mutate(.obs = log10(cyanophyta)))
xgboost_score_train <-
train_prediction |>
yardstick::metrics(.obs, .pred) |>
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
knitr::kable(xgboost_score_train)
```
```{r}
train_prediction |>
ggplot(aes(.pred, .obs)) +
geom_point() +
geom_smooth(method = "lm")
```
```{r}
test_processed <- bake(nla_recipe, new_data = nla_test)
test_prediction <- xgboost_model_final |>
# fit the model on all the training data
fit(
formula = nla_formula,
data = train_processed
) |>
# use the training model fit to predict the test data
predict(new_data = test_processed) |>
bind_cols(nla_test |>
mutate(.obs = log10(cyanophyta)))
# measure the accuracy of our model using `yardstick`
xgboost_score <- test_prediction |>
yardstick::metrics(.obs, .pred) |>
mutate(.estimate = format(round(.estimate, 2), big.mark = ","))
knitr::kable(xgboost_score)
```
```{r}
cyanophyta_prediction_residual <- test_prediction |>
arrange(.pred) %>%
mutate(residual_pct = (.obs - .pred) / .pred) |>
select(.pred, residual_pct)
cyanophyta_prediction_residual |>
ggplot(aes(x = .pred, y = residual_pct)) +
geom_point() +
xlab("Predicted Cyanophyta") +
ylab("Residual (%)")
```
```{r}
test_prediction |>
ggplot(aes(.pred, .obs)) +
geom_point() +
geom_smooth(method = "lm", colour = "black")
```

BIN
coding/xgboost_tuned.RDS Normal file

Binary file not shown.

BIN
data/heights.RDS Normal file

Binary file not shown.

BIN
data/licordata.RDS Normal file

Binary file not shown.

BIN
data/metadfdemo.RDS Normal file

Binary file not shown.

Binary file not shown.

View File

@ -19,4 +19,7 @@ subtitle: "课程简介"
- 网页公开:[https://drwater.rcees.ac.cn/course/public/RWEP/\@PUB/index.html](https://drwater.rcees.ac.cn/course/public/RWEP/@PUB/index.html)
- 课件代码:[https://drwater.rcees.ac.cn/git/course/RWEP.git](https://drwater.rcees.ac.cn/git/course/RWEP.git)
- 代码web界面[https://on.tty-share.com/s/2YElKFjzniilfg3vH-d1PUqqmz_MQzNki5dyxWWL7QONCX_77GzsdP9EEAgBQu3ONwM/](https://on.tty-share.com/s/2YElKFjzniilfg3vH-d1PUqqmz_MQzNki5dyxWWL7QONCX_77GzsdP9EEAgBQu3ONwM/)
- 代码web界面[https://on.tty-share.com/s/4hC-HxrUnzWmL4JnbopI4W-qrYU1oQgeYuvyJNaGLREcxl0_wbNAJ5UYRf8oEa0ayp4/](https://on.tty-share.com/s/4hC-HxrUnzWmL4JnbopI4W-qrYU1oQgeYuvyJNaGLREcxl0_wbNAJ5UYRf8oEa0ayp4/)
<!-- `tty-share --public -readonly -command tmux` -->